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Abstract—Automated program repair (APR) has made signifi-
cant progress in autonomously locating and fixing software faults.
However, developers face uncertainty in trusting and validating
patches, as the boundaries of the patch and the concrete inputs
the patch fixes often remain unclear.

In this paper, we introduce AVICENNAPATCH, a novel tool de-
signed to provide precise explanations of the input structures that
are covered by the patch. Building on the AVICENNA framework,
AVICENNAPATCH uses a differential testing strategy, executing
both the original and patched program versions to identify
inputs where behavior diverges. By leveraging ISLA constraints,
AVICENNAPATCH generates human-readable, grammar-based
explanations that characterize patch-triggering inputs in terms
of syntactic and semantic features. To refine these explanations,
AVICENNAPATCH iteratively generates new inputs and adjusts its
hypotheses, ensuring that the explanations are both precise and
generalizable. Our approach not only enhances transparency in
APR by clarifying the operational boundaries of patches but also
supports developers in evaluating the reliability and robustness of
automated fixes across diverse input scenarios. Our evaluation on
12 patches for 7 different subjects shows that AVICENNAPATCH
can provide effective and general explanations.

Index Terms—debugging, testing, patch validation

I. INTRODUCTION

In automated program repair (APR), an ongoing challenge is
to ensure that a generated patch is both general and effective
in the scenarios it aims to address. While recent advances
in APR have significantly improved the ability to detect and
repair faults automatically, understanding the conditions under
which these patches are activated—which inputs trigger the
patch—often remains unclear. Specifically, when a patch is
generated to address a particular issue in code, there is often
little insight into what kinds of inputs are covered by its
execution. This lack of transparency can hinder a developer’s
ability to trust and validate automatically generated patches,
as the boundaries of their effectiveness remain opaque.

Understanding when a patch gets triggered is vital for nu-
merous reasons. Developers need to know the types of inputs
and runtime conditions that will exercise the patched code,
particularly to avoid situations where a patch may introduce
unexpected behavior. For example, if a patch is triggered only
under rare input conditions, this might indicate that it solves
a highly specialized corner case rather than addressing the
broader fault. On the other hand, if it triggers too broadly, there
is a risk of the patch negatively impacting other, unrelated
functionalities. Knowing the precise conditions under which a
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Fig. 1. Differential Behavior Testing. We use a differential oracle to detect
whether a patch changes the outcome of a test input. AVICENNAPATCH then
automatically identifies the characteristics of the inputs affected by the patch.

Outcome
Different?

Test Inputs

failing + passing

Patched Program

patch is activated can thus play a pivotal role in enhancing the
reliability and predictability of APR.

In this paper, we introduce AVICENNAPATCH, a novel
approach to explain the specific input scenarios that activate
a patch, filling a critical gap in APR transparency. We use a
differential oracle to determine which inputs are affected by
the patch (Figure 1). This process begins with a set of initial
test inputs, which include both passing and failing cases that
utilize the patch in question. These inputs are executed on
both the original program P and the patched program P’. By
comparing outcomes between P and P’, we identify inputs
where behavior differs as a result of the patch. Our objective
is to derive a precise and generalized explanation that describes
all inputs for which the outcome has changed (S;), while
excluding cases where the patch does not affect behavior (.S5).

To systematically analyze and describe these differences,
we parse the inputs with a provided input specification (i.e.,
a grammar) that captures key syntactic and semantic features.
This allows us to pinpoint common input characteristics asso-
ciated with the patch’s activation. We then use these features to
automatically generate a detailed explanation of the conditions
under which the patch is triggered. These explanations are rep-
resented as ISLA constraints [1], a domain-specific language
for specifying and analyzing constraints on structured inputs.

Since initial explanations may be inaccurate or overly
specific, we employ a hypothesis refinement loop, iteratively
adjusting or confirming our explanations to generalize them
effectively. Through this process, we provide developers with
actionable insights into the precise input conditions for patch
effectiveness, aiding in evaluating and validating the patch’s
applicability and reliability.



1 import math
2
3 def logarithm(x: float):

4 return math.log(x)

Fig. 2. A simple function computing the natural logarithm of a number x.
While straightforward, it does not handle edge cases such as negative values,
leading to errors.

Example. To illustrate how AVICENNAPATCH works, con-
sider the example in Figure 2, which shows a simple Python
function for computing the natural logarithm of a given
value z. However, it does not handle edge cases such as x = 0
or negative values, causing errors and incorrect behavior:
calling logarithm (0) raises an exception because the log-
arithm is undefined at zero, while calling logarithm (-34)
raises an exception because the logarithm of a negative number
is undefined in the real domain.

A language model like ChatGPT [2] can easily generate a
patched version of this function, as shown in Figure 3. This
revised implementation addresses the problematic edge cases
with explicit checks: (i) it returns —inf when x = 0, avoiding
an error, and (ii) ensures z is both numeric and positive;
otherwise, a TypeError is raised.

At first glance, this patch may appear straightforward, but
it can be deceptively difficult to determine exactly which
inputs it handles. Developers must carefully analyze how
each function component behaves under a range of inputs,
especially in scenarios involving nested or subtle conditions.
AVICENNAPATCH helps address these challenges by system-
atically generating constraint-based explanations for inputs
that activate specific conditions. Using a defined input format
specification (e.g., a grammar), AVICENNAPATCH constructs
an explanations as ISLA constraints, clarifying which input
forms the patch covers:

exists (float) number in start:

(number = "0") or
exists (maybe-minus) sign in (floar):
(sign = "n-m)

Given this explanation, the following input cases are iden-
tified as covered by the patch:

Floating-point numbers equal to zero: When the (floar) el-
ement in the input is exactly zero, the patch handles
this case by returning a controlled response (e.g., —inf)
instead of causing an error as in the unpatched version.

Negative floating-point numbers: The explanation shows
that when the (maybe-minus) element within (float)
matches a negative sign, the patch correctly identifies
negative floating-point numbers and handles values less
than zero appropriately. This prevents the function from
attempting to compute the logarithm of a negative num-
ber, thereby avoiding the uncontrolled exception in the
original implementation.

By analyzing these input characteristics, AVICENNAPATCH
provides a precise mapping between input structures and the
patched code’s behavior. This helps developers understand

1 import math

3 def logarithm(x: float):
4 # Patch applied to cover edge cases
5 if x ==
6 return float ("-inf")
elif x > 0:
8 return math.log (x)
9 else:
10 raise TypeError ("Input must be a" \

11 "positive value")

Fig. 3. Patched logarithmic function. It explicitly checks for zero and negative
numbers. These changes ensure robust handling of edge cases.

why certain inputs trigger the patch and confirms that edge
cases are correctly addressed.

While this specific patch is straightforward, real-world
patches may involve intricate conditions that are challenging
to track manually. By systematically explaining which inputs
activate a patch, AVICENNAPATCH increases transparency and
confidence in automatically generated patches. This clarity is
crucial for ensuring patches are robust, especially in complex
codebases with intricate input interactions. Moreover, our
approach extends beyond just explaining a single patch. It
systematically identifies and categorizes the inputs affected by
any patch, providing explanations that are both interpretable
and applicable to a wide range of patches. This enables
developers to:

Validate Patch Coverage. Confirm that the patch correctly
handles all intended input scenarios without leaving gaps
or introducing unintended side effects.

Improve Testing. Use solvers, like ISL A, and the derived ex-
planations to generate targeted test inputs that thoroughly
exercise the patched behavior.

Enhance Debugging. Quickly identify which inputs cause
unexpected patched behavior, facilitating faster diagnosis
of complex issues.

By helping developers understand how patches change pro-
gram behavior for different inputs, AVICENNAPATCH provides
insights needed to ensure patches work as intended and im-
prove software reliability. With clear, automated explanations
of patch-triggering conditions, developers gain the confidence
to maintain and evolve patched code effectively.

In summary, we make the following contributions:

Patch Input Explanation. We present AVICENNAPATCH, a
novel framework designed for generating descriptive ex-
planations that summarize the types of inputs affected
by a patch. These explanations clarify the operational
boundaries of the patch, enabling developers to assess
its behavior across diverse input scenarios.

Evaluation. We evaluate AVICENNAPATCH on 12 different
patches, demonstrating that it can accurately approximate
the input space affected by each patch. Our results
show that we generate precise explanations, effectively
predicting and producing inputs that trigger the patches.



The remainder of this paper is organized as follows. Sec-
tion II discusses the related work as well as the concepts
and frameworks that our approach leverages. In Section III,
we detail the principles of AVICENNAPATCH, followed by
its implementation in Section IV. Section V evaluates AvI-
CENNAPATCH on a number of patches, assesing the precision
and accuracy of the explanations. Section VII closes with
conclusion and future work.

II. BACKGROUND AND RELATED WORK
A. Patch Testing

Patch testing can be used to demonstrate the presence of
bugs in the generated patch (or fix) for a program under
test. Existing work [3], [4], [5] has documented the extent
to which patches provided to several large scale software are
buggy. We therefore draw related work from two competing
techniques (i.e., directed symbolic execution and directed
greybox fuzzing) that have been applied to test patches.

Directed symbolic execution [6], [7], [5], [8], [9] guides
the analysis to specific parts of the program, e.g., a target
line, using various heuristics such as maximizing a certain
fitness function [6] or following a path along a given control-
flow graph (CFG) [7]. These approaches, in principle, can be
more efficient and precise than AVICENNAPATCH, however,
their inherent reliance on heavy program analysis comes with
scalability issues.

Greybox fuzzing on the other hand has seen recent advance-
ments, and researchers have taken advantage of its strengths
to address the aforementioned scalability issues of symbolic
execution based approaches. These fuzzing strategies in their
basic form perform a biased and random search over program
input space, and directed greybox fuzzing [10], [11], [12],
[13], [14] lifts this idea and tries to guide exploration towards
certain locations in the program under test. This idea lends
itself readily for testing patches—use the patched lines as
the target for fuzzing. In deed, the authors of AFLGo [10]
show how the symbolic execution based tool Katch [5] fails
to reproduce a vulnerability within 24 hours, while AFLGo
reproduces it within minutes. Other state-of-the-art directed
greybox fuzzing tools that have been used for patch testing
include: Beacon [11], SelectFuzz [12], and DAFL [13]. How-
ever, directed greybox fuzzing is only a testing method and
does not give any explanations to program failures. Exploring
the synergy between fuzzing and AVICENNAPATCH is an
interesting direction for future work.

B. Automatic Program Repair

Many methods have been applied to the problem of auto-
matic program repair (APR). Starting with Forrest et al. [15]’s
seminal work on GenProg, a variety of different search-based
approaches and algorithms have been investigated, ranging
from genetic programming techniques (GenProg family of
approaches) [15], [16], [17], [18], [19] to mutation-based ap-
proaches [20], [21], [22] and those that exploit templates [23],
[24], [25]. Techniques in this camp are also known as generate-
and-validate techniques, in which patches are generated via

program edit operations and validated dynamically, typically
over a given test suite.

Another line of work uses symbolic analysis to execute
faulty lines to derive repair constraints and exploit component-
based program synthesis to solve the repair constraints [26],
[27], [28].

More recent work takes advantage of advances in machine
learning. Here, we can further classify approaches into two
categories: (i) Neural Machine Translation (NMT) based tech-
niques, which essentially reduce an APR task into an NMT
task and translates buggy code into correct code. Notable tools
in this category include TENURE [29], Tare [30], SelfAPR
[31], RewardRepair [32], Recoder [33], CURE [34], and
CoCoNuT [35]. And (ii) Large Language Models (LLMs),
which have also been subjected to the problem of APR and
have been shown to outperform all existing approaches [36].
While they differ in their capabilities, LLM-based APR tools
typically take an input prompt and the buggy code and query
the underlying LLM to generate a patch at a given location.
This basic idea was first realized in the tool AlphaRepair
[37]. FitRepair [36] improves on AlphaRepair and incorporates
the plastic surgery hypothesis in which existing, correct code
fragments are reused to repair buggy code fragments.

Despite these advancements, overfitting remains the key
challenge in APR techniques [38]. Several approaches have
been proposed to combat the overfitting problem in APR: Gao
et al. [39] proposes ExtractFix that addresses this challenge via
symbolic reasoning. More specifically, given a crash location,
ExtractFix first extracts a crash-free constraint, i.e., a property
that all inputs should satisfy to avoid the vulnerability, and
propagates this crash-free constraint to the fix location and
finally patches are generated that ensure that the constraint is
satisfied for all inputs. Another notable approach to address
overfitting is implemented in the tool CPR [40]. The basic
idea behind CPR is the co-exploration of both the patch and
input spaces using concolic execution, and returns a ranked list
of patches that are more precise. Moreover, Zhang et al. [41]
describe a CEGIS-style approach that returns “likely patch
invariants” mined using the Daikon system and leverages fuzz
testing for dynamic tracing and refinement of the output. This
approach outperforms both CPR and ExtractFix.

C. Semantic Debugging

Eberlein et al. introduced AVICENNA [42], a technique for
automatically identifying failure causes using logical input
properties. AVICENNA learns failure-constraints that describe
the conditions under which a program fails, enabling effective
fault isolation and debugging.

AVICENNAPATCH extends this idea to derive explanations
for patches, focusing on their operational boundaries rather
than faults. Unlike AVICENNA, which uses a fault-based oracle
to classify inputs as fault-triggering or non-fault-triggering,
AVICENNAPATCH employs a differential testing strategy. By
comparing the outputs of original and patched program ver-
sions, AVICENNAPATCH identifies inputs that produce differ-
ent outcomes, revealing how and when a patch affects program
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Fig. 4. Overview of AVICENNAPATCH’s workflow. Starting with a grammar, initial test inputs, and a patch file, AVICENNAPATCH automatically generates

an explanation detailing the characteristics of inputs affected by the patch.

behavior. This shift in focus expands AVICENNAPATCH’s
scope. While AVICENNA isolates fault-triggering inputs, AVI-
CENNAPATCH classifies inputs based on patch-triggering be-
havior, offering insights into patch effectiveness, coverage,
and configuration dependencies. Its differential oracle enable
developers to understand the specific conditions under which
patches are activated. In summary, AVICENNAPATCH builds on
AVICENNA by providing patch-specific explanations through
differential testing, enhancing transparency and reliability in
automated program repair (APR).

III. APPROACH

In this section, we present the details of AVICENNAPATCH,
an effective and general approach for constructing patch expla-
nations. Our approach extends the AVICENNA framework to
produce general and precise ISLA constraints, explaining the
input conditions under which the program’s behavior changes
due to a patch. The key idea behind AVICENNAPATCH is to
analyze how a patch changes a program’s behavior on certain
inputs. By identifying and examining these inputs—referred
to as patch-triggering inputs—we aim to learn and refine
constraints that characterize the new or changed program
behavior. Through an iterative hypothesis refinement loop, we
generate a precise explanation that captures all inputs affected
by the patch. Figure 4 provides an overview of our tool’s
internal process.

Overview. Our approach begins with a program under test,
a patch file, a set of initial inputs, and an input format
specification in the form of a context-free grammar. To explain
the patch, we require at least one input that triggers the patched
behavior.

AVICENNAPATCH consists of three main steps to produce a

comprehensive explanation of which inputs trigger the patch:

1) Differential Patch Behavior Analysis (Section III-A):
Determine which inputs cause different program behav-
iors between the original and patched versions.

2) Learning Differential Behavior (Section III-B): Gen-
erate a general explanation describing input properties
that trigger the patch, using the ISLearn [1] pattern-based
constraint miner.

3) Iterative Feedback Loop (Section III-C): Refine and
validate these explanations by generating new inputs and
observing program behavior.

This procedure allows us to associate the characteristics of
inputs with observed changes in program behavior, ensuring
that the explanations are both general and precise.

A. Differential Patch Behavior Analysis

AVICENNAPATCH focuses on identifying input properties
that the patch covers rather than explaining failure-related
circumstances like tools such as AVICENNA. To determine
these properties, we use differential testing to analyze how
the program’s behavior changes after applying the patch.

The first step in AVICENNAPATCH involves determining
whether the patch alters the program’s behavior for given
inputs. We use a differential oracle that compares outputs of
the original program P and the patched version P’ for the
same inputs, as illustrated in Figure 1.

If the output differs between P(z) and P’(x) for an input
x, we classify x as a patch-triggering input and include it
in set Sp. If the output remains the same, x is considered a
non-triggering input and placed in set Ss.

Formally, given an initial set of inputs I, we define:

Sy ={xel|Px)#P(x)}
Se={zxel|Px)=P(x)}

Here, S; contains inputs that cause the patch to alter the
program’s behavior, while Sy contains inputs where behavior
remains unchanged. Identifying these sets allows us to focus
on the properties of inputs in S7, which are key to understand-
ing the patch’s impact.

B. Learning Differential Program Behavior

With the differential behavior established, the next step is
to generalize the input characteristics that define S;. Using
a pattern-based learning approach, AVICENNAPATCH creates
a semantic explanation that captures the properties of patch-
triggering inputs.

Like AVICENNA, our approach relies on an input format
specification provided as a context-free grammar G. This



grammar helps us associate syntactic features and semantic
properties of inputs with observed program behavior changes.
We employ ISLearn [1], a pattern-based constraint miner
integrated into AVICENNA, to learn constraints that describe
how the patch changes the program’s behavior. This constraint
learning process can be divided into two key steps:

Feature Extraction. For each input = in S; and S5, we ana-
lyze its syntactic and semantic structure according to the
grammar G. This analysis extracts features represented in
the internal domain-specific language ISLA.

Constraint Synthesis. ISLearn uses these features to con-
struct first-order logic formulas (ISLA constraints) that
distinguish patch-triggering inputs in S; from non-
triggering inputs in S,. It employs a pattern-based ap-
proach to ensure that the learned constraints capture the
essential characteristics of inputs triggering the patch
while excluding those that do not.

Formally, the goal is the synthesize a constraint ¢ such that:

Vz € Sy :9p(x) = True, Vy € Sy :1(y) = False

However, perfect separation of S; and Sy may not always be
achievable. In such cases, ¥ should aim to maximize precision
(accepting only inputs in S7) and recall (capturing all inputs
in S7). This ensures ¥ provides a meaningful explanation of
the input conditions that activate the patch.

While ¢ may generalize beyond the initial inputs, the initial
explanation may not be precise enough, thus further refinement
is necessary.

C. Iterative Feedback Loop

To ensure that the generated explanation (the ISLA con-
straint 1) is both precise and general, AVICENNAPATCH em-
ploys an iterative hypothesis refinement loop. The refinement
process consists of the following steps:

Input Generation. Based on the current hypothesis 1,
AVICENNAPATCH generates new inputs that should the-
oretically trigger the patch.

Testing and Validation. Each newly generated input is
run on both the original program P and the patched
program P’. The observed behavior helps in validating
the correctness of 1. If a new input satisfies ¢ and triggers
the patch as expected, it strengthens the confidence in the
hypothesis. If a new input satisfies ¢ but does not trigger
the patch or if the patch triggers on an input not covered
by 1), it indicates that 1) needs refinement.

Constraint Refinement: Using the feedback from the newly
generated inputs, 1) is refined to better capture the patch-
triggering conditions. This may involve adjusting or com-
bining constraints to ensure that all triggering inputs are
included and non-triggering inputs are excluded.

This iterative process continues until ¢ is both inclusive
of all inputs in S7 and exclusive of those in S2, ensuring
the final explanation accurately describes the patch-triggering
conditions. The resulting refined ISLa constraint provides a
robust and interpretable explanation of the patch’s activation

conditions. Developers can use this constraint to understand
the impact and scope of the patch, ensuring more effective
verification and maintenance of the program.

Summary. AVICENNAPATCH represents a paradigm shift
from focusing on failure-related behaviors to analyzing how
patches change program behavior. By automatically learning
and refining constraints that capture the properties of inputs
triggering the patch, AVICENNAPATCH extends AVICENNA’S
approach to provide developers with clear, human-readable
explanations of patch effectiveness. This methodology sup-
ports more informed decision-making in patch development,
application, and verification.

IV. IMPLEMENTATION

This section outlines the implementation of AVICENNAP-
ATCH, which builds on the AVICENNA framework [42] and
is implemented entirely in Python. We leverage AVICENNA’S
components, such as its integrated learner, using default
parameters where applicable. While learning, the learned
formulas are required to achieve at least a Recall of 90%
and a Precision of 60%. These thresholds are designed to
prioritize general explanations, ensuring the constraints are not
overly specific while maintaining acceptable accuracy. Given
a program and its corresponding patch file, AVICENNAPATCH
automatically generates a differential oracle. This oracle is
implemented as a single function that takes an input as a
parameter and returns whether the input triggers the patch.
It forms the foundation of the patch-triggering input classifi-
cation, enabling subsequent learning and iterative refinement
of constraints.

V. EVALUATION

We investigate the following research questions to assess
how accurately our explanations approximate the input space
of the patch:

RQ1 Predicting Patch-Triggered Inputs. How accurately can
our explanations predict whether an input belongs to the
input space affected by the patch? (Section V-B)

RQ2 Generating Patch-Triggered Inputs. How effectively
can our explanations generate new inputs that belong to
the input space affected by the patch? (Section V-C)

By evaluating the quality of our explanations both as
predictors and producers, we aim to determine how well they
approximate the patch’s input space without overspecializing
(which would make them accurate producers but inaccurate
predictors) or overgeneralizing (which would make them ac-
curate predictors but inaccurate producers).

A. Evaluation Setup

1) Subjects: To assess the effectiveness of AVICENNAP-
ATCH, we evaluated our tool’s diagnostic capabilities on a
diverse set of subjects from the Tests4Py benchmark [43].
Our evaluation includes /2 patches drawn from 7 projects
of varying size, functionality, and complexity, allowing us
to explore AVICENNAPATCH’s performance across different
patch and program behaviors.



The subjects from Tests4Py include the following: Log-
arithm (used as a running example), Calculator, Middle,
Expression, and Markup, as well as two real-world projects,
Pysnooper [44] and Cookiecutter [45]. The latter two are
considerably larger in size and complexity compared to the
other subjects, containing significantly more lines of code
and real-world functionalities, whereas the remaining subjects
are simpler, toy examples containing only a few functions
each [46]. Our selection covers a wide range of patch sizes,
from small, localized changes of 1-3 lines to larger patches,
such as in Pysnooper.2, which involves 35 lines of modifi-
cations. This variability in patch size enables us to evaluate
AVICENNAPATCH’s ability to handle patches with differing
scopes and complexities. The Tests4Py benchmark extends
BugsInPy [47] with functionality to verify inputs at the system
level. This makes Tests4Py particularly suitable for evaluating
AVICENNAPATCH, as it aligns with our goal of understanding
the input conditions that trigger specific patches. Additionally,
each subject in Tests4Py is accompanied by a grammar spec-
ifying the input format, allowing us to leverage this grammar
for generating and analyzing patch-triggering inputs.

2) Data Sets: To answer RQ1, we require sets of test inputs
to evaluate the prediction capabilities of AVICENNAPATCH’S
explanation. To generate these validation inputs, we use the
k-path coverage guided, grammar-aware mutation fuzzer pro-
vided by ISLearn [1]. With the fuzzer, we automatically gen-
erate 200 unique validation inputs for each subject—100 patch
triggering and 100 non-triggering test inputs. We measure
the respective predictive power of the explanation based on
these validation inputs. We evaluate AVICENNAPATCH’s per-
formance with an initial input corpus of two inputs only—one
patch-triggering and one non-triggering input. This decision
follows the idea that we want to know if our extended learn-
ing process and the feedback loop can generate meaningful
additional inputs and thus improve its accuracy and precision.
The two initial inputs, were provided by Tests4Py.

3) Research Protocol: To address RQ1 and RQ2, we fol-
lowed a systematic procedure: (i) For each patch, we started
AVICENNAPATCH using the respective grammar and the two
initial inputs. These initial inputs serve as the starting point
for the learning process. (ii)) We performed 10 iterations
of the learning and refinement process. This number is the
default setting for the refinement loop in AVICENNAPATCH,
and preliminary results indicated that it is sufficient for the
explanations to converge. (iii) To account for randomness in
the process, we repeated the experiments 10 times for each
patch, using different random seeds to control variability.

For RQ1, we analyzed the predictive power of AVICENNA-
PATCH’s final explanations for each patch. We then measured
the performance of the explanations on the evaluation data set
using Precision (the proportion of inputs predicted to trigger
the patch that actually do so) and Recall (the proportion of all
inputs that trigger the patch which are correctly predicted by
the explanation). This assessment allowed us to evaluate how
accurately the explanations could predict whether a new and
unseen input would trigger the patch.

TABLE I
PRECISION AND RECALL WHEN USING AVICENNAPATCH AS A PREDICTOR
AND PRODUCER. PRECISION AND RECALL ARE AVERAGES OVER 10 RUNS.

RQ1 Predictor RQ2 Producer

Subject

Precision  Recall  Precision  Recall
Logarithm 100% 100% 100% 100%
Calculator 100% 100% 100% 100%
Middle.1 100% 100% 100% 100%
Middle.2 100% 100% 100% 100%
Expression 71% 93% 100% 66%
Markup.1 65% 100% 99% 100%
Markup.2 72% 100% 85% 100%
Pysnooper.1 100% 100% 100% 100%
Pysnooper.2 100% 100% 100% 100%
Cookiecutter. 1 60% 92% 98% 76%
Cookiecutter.2 81% 93% 75% 89%
Cookiecutter.3 59% 100% 100% 100%
Total Average 84% 98 % 96 % 94 %

For RQ2, we evaluated how effectively the generated expla-
nations could produce new patch-triggering inputs. Using the
ISLA solver, we generated 100 inputs predicted to trigger the
patch and 100 inputs predicted not to trigger the patch based
on the explanations. We then measured the reliability of the
explanations as input generators by verifying, using Precision
and Recall, whether the generated inputs indeed triggered or
did not trigger the patch as expected.

B. RQI: Predicting Patch-Triggered Inputs

To evaluate how accurately AVICENNAPATCH’s explana-
tions approximate the input space affected by the patch, we
measured the Precision and Recall of the final explanations on
the evaluation dataset. The results are summarized in Table I
under the Predictor columns.

For several subjects, AVICENNAPATCH achieved perfect
approximation of the patch’s input space. Specifically, for
Logarithm, Calculator, Middle.1, Middle.2, Pysnooper.1, and
Pysnooper.2, both Precision and Recall were 100%. This
indicates that the explanations precisely captured the input
space affected by the patch, correctly predicting all patch-
triggering inputs without misclassifying any non-triggering
inputs. For other subjects this varies: For Expression, we
achieved a Precision of 71% and a Recall of 93%. The high
recall suggests that the explanation covered most of the patch-
triggering input space, but the lower precision indicates that
the explanation also included inputs outside the patch’s input
space, leading to false positives. Similarly, for Cookiecutter.2
we recorded a Precision of 81% and a Recall of 93%. This
shows a reasonably accurate approximation of the input space,
with some over-approximation resulting in false positives.

Overall, the average Precision was 84%, and the average
Recall was 94% across all subjects. This demonstrates that
AVICENNAPATCH’s explanations generally approximate the
patch’s input space accurately, effectively predicting whether
inputs belong to the affected input space. However, in some
cases, particularly with more complex subjects, the precision
was lower due to false positives.



C. RQ2: Generating Patch-Triggered Inputs

To assess how effectively AVICENNAPATCH’s explanations
approximate the patch’s input space by generating new patch-
triggering inputs, we used the ISLA solver to generate new
inputs and measured the Precision and Recall. The results are
shown in Table I under the Producer columns.

For most subjects, the explanations proved highly effective
in generating inputs that accurately represent the patch’s
input space: Logarithm, Calculator, Middle.1, Middle.2, Pys-
nooper.1, Pysnooper.2, and Cookiecutter.3 all achieved 100%
Precision and Recall. This indicates that the explanations
precisely captured the input space affected by the patch,
enabling the generation of inputs that consistently triggered the
patch without including any non-triggering inputs. Expression
exhibited a Precision of 100% but a lower Recall of 66%.
The perfect precision means all generated inputs belonged to
the patch’s input space, but the lower recall suggests that the
explanation did not cover all possible patch-triggering inputs,
resulting in a partial approximation of the input space.

Overall, the high precision across all subjects indicates
that the explanations effectively generate valid patch-triggering
inputs without producing false positives. The variable recall
reflects the challenge of fully covering the patch’s input space,
especially in programs with complex input formats or patch
logic. These findings demonstrate that AVICENNAPATCH’s ex-
planations are generally effective in approximating the patch’s
input space when used as producers, generating new inputs
that belong to the affected input space. In cases where recall
was lower, such as with Expression, further refinement of the
explanations might enhance coverage of the input space.

Summary of Results The evaluation results indicate that
AVICENNAPATCH is generally effective in accurately approx-
imating the input space affected by the patch. High Precision
and Recall values across multiple subjects demonstrate the
tool’s capability to capture the conditions under which patches
are activated. In the context of RQI, for most subjects the
explanations showed strong accuracy in predicting whether
inputs belong to the patch-affected input space. Regarding
RQ2, the explanations proved effective in generating new
inputs that belong to the patch’s input space. The generated
inputs consistently triggered the patch as intended, confirming
the explanations’ utility in producing relevant test cases.

Overall, these findings suggest that AVICENNAPATCH per-
forms well in approximating the input space of the patch, aid-
ing developers in understanding and testing patches effectively.

D. Threats to Validity

1) Internal Validity: Our evaluation relies on the subjects
and parameters provided by Tests4Py, which may influence
the learning process of AVICENNAPATCH. If, for instance,
inputs are not representative of the broader input space, the
generated explanations might not generalize well. To mitigate
this threat, we used the parameters supplied by Tests4Py,
ensuring consistency with prior studies and benchmarks.

The iterative learning and refinement process in AVICEN-
NAPATCH involves randomness, such as in input generation

and learning. This could lead to variability in results across
different runs. To address this, we repeated each experiment
10 times with different random seeds and reported average
Precision and Recall values, thereby reducing the impact of
random fluctuations.

2) External Validity: Our study evaluated AVICENNAP-
ATCH on 12 bugs from 7 projects, which, while diverse, may
not encompass the full spectrum of software systems and
patches found in real-world applications. The subjects included
both toy examples and real-world projects, but the sample size
is still limited. Therefore, the results might not generalize to all
types of software or patches, especially those with significantly
different characteristics or complexities.

The performance of AVICENNAPATCH may be sensitive to
specific configuration settings and parameters, such as the
number of iterations in the learning loop or thresholds for
precision and recall during constraint learning. We used default
settings and justified our choices based on preliminary results,
but different settings might yield different outcomes.

VI. LIMITATIONS

AVICENNAPATCH inherits several limitations from the AvI-
CENNA framework. Chief among these is its reliance on
an appropriate vocabulary to express the conditions under
which a patch is triggered. The effectiveness of the generated
explanations depends on the expressiveness and accuracy of
this vocabulary.

Additionally, AVICENNAPATCH’s use of grammars to gen-
erate new inputs imposes constraints on its applicability.
Specifically, it cannot produce or explain patches targeting
cases involving unexpected input types or formats outside the
defined grammar. Since the grammar specifies the expected
structure of input parameters, generating or reasoning about
inputs that deviate from this structure is currently beyond
AVICENNAPATCH’s capabilities.

VII. CONCLUSION

In this paper, we introduced AVICENNAPATCH, a novel
approach to understand and explain the conditions under which
patches are activated. By leveraging a differential testing strat-
egy, AVICENNAPATCH provides developers with clear insights
into the specific input characteristics that trigger a patch,
supporting the transparency, reliability, and predictability of
automatic program repair. Through its differential outcome
oracle, AVICENNAPATCH enables a nuanced understanding
of patch behavior, distinguishing inputs that impact program
outcomes from those that do not. This focus on patch acti-
vation helps developers evaluate the effectiveness and scope
of patches, addressing a critical gap in APR by enhancing
developers’ ability to trust and validate automated fixes.

Several directions could further enhance AVICENNAP-
ATCH’s capabilities and impact:

Partial and Incomplete Patches. AVICENNAPATCH could
be extended to identify partial or incomplete patches by
analyzing the properties of failing inputs remaining in S5.
This would enable developers to pinpoint cases where
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the patch does not fully address the issue, highlighting
missing functionality or overly specific patch conditions
for further refinement.

sym-
bolic or concolic execution techniques could complement
AVICENNAPATCH’s input-based analysis. This integration
would enhance its ability to explore input conditions for
deeply nested or interdependent code paths, increasing the
precision and comprehensiveness of input classifications.
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