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Abstract—Mispredictions by machine learning components
can have severe consequences, especially in safety-critical and
mission-critical software systems. Therefore, understanding and
debugging these mispredictions is a crucial part of the develop-
ment process for systems that use machine learning components.
Previous research has successfully applied methods that identify
when a model’s predictions may be unreliable by generating a
rule set that links feature values to prediction errors. However,
current state-of-the-art rule set approaches require significant
computational resources, particularly for large data sets.

To address these high computational demands, we propose
a strategy to identify and focus only on the most influential
features that lead to mispredictions. Additionally, to improve
the accuracy of mispredictions diagnosis, we replace traditional
rule-based approaches with decision tree learning. We evaluate
our tool MMDFAST across 11 diverse real-world data sets. The
results show that focusing on influential features with decision
trees improves the accuracy of misprediction explanations, while
significantly reducing computational demands in all scenarios.
Thus, MMDFAST produces better results much faster, making
it more efficient and effective for generating misprediction
explanations.

I. INTRODUCTION

Machine learning is applied to a wide range of real-world
problems. As models grow in complexity, their decision pro-
cesses become opaque. In high-stakes domains such as traffic
management [1], medical diagnostics [2], and autonomous
driving [3], this opacity raises serious risks. To ensure reli-
ability, it is necessary to rigorously test and interpret these
“black box” systems.

Testing machine learning models requires techniques that
assess reliability and generalization. Even with rigorous vali-
dation, mispredictions remain common. Causes include poor
data quality [4], such as noisy or imbalanced training sets;
models that are too simplistic [5]; or concept drift [6], where
target distributions shift over time and degrade performance.
Although machine learning components often achieve strong
results, understanding why they fail remains difficult. Mispre-
dictions arise from diverse factors, which complicates efforts
to analyze model behavior. Recent research has concentrated
on two directions: making the decision process more transpar-
ent and applying debugging techniques, such as rule induction,
to explain mispredictions [7]-[9].

Explainable machine learning aims to make the decisions of
these models more transparent. Common approaches include

Jirgen Cito
TU Wien
Vienna, Austria
juergen.cito@tuwien.ac.at

Lars Grunske
Humboldt-Universitdt zu Berlin
Berlin, Germany
grunske @informatik.hu-berlin.de

attributing importance to input features [7] or constructing
surrogate models that approximate the original system. These
methods seek to improve both interpretability and debuggabil-
ity [8]. Classical techniques, such as LIME [8] and Partial De-
pendence Plots [10], primarily analyze relationships between
inputs and outputs, but they do not account for whether the
predictions themselves are correct.

In contrast, Machine Learning Model Diagnosis (MMD) [9]
constructs an interpretable set of rules that link specific
feature values to increased likelihood of mispredictions. By
iteratively refining these rules against a ground truth, MMD
produces concise conditions that highlight when a model is
systematically unreliable. These rules act as concrete “red-
flag” indicators. When triggered, developers know to treat
the corresponding prediction with caution. Such rules can be
integrated into CI pipelines to flag risky predictions, guide
manual reviews, or inform targeted data collection—thereby
supporting debugging and increasing practitioner trust. The
usefulness of misprediction explanations has been demon-
strated in practice [9]. At Facebook, for instance, MMD
revealed that long iOS crash traces were a major source of
errors in the Bug2Commit model, guiding feature augmenta-
tion that reduced mispredictions. In another case, applied to
Oncall Recommendation, MMD exposed how reliance on a
legacy feature introduced noise into rank assignments, helping
engineers identify and suppress problematic conditions. These
case studies show how simple rules can uncover hidden failure
modes and provide actionable guidance to improve real-world
model usage [9].

While valuable, MMD has a critical limitation: scalability.
Because it constructs rules from every feature in the data
set, runtime grows quickly with feature count. On moderately
sized data (e.g., 50,000 instances, ~50 features), generating
explanations can take up to an hour—too slow for iterative
debugging or feedback loops. To illustrate, consider the Python
merge-conflict data set [11] (approx. 50,000 commits, 28
features such as number of files added/removed, active devel-
opers, and commit frequency). Sophisticated predictive models
achieve around 95% accuracy here, yet they still exhibit
systematic blind spots. MMD surfaces explanations such as
parallel_files_changed_num > 0 A files_removed > 2—that is,
commits that change files simultaneously and delete more than
two files are precisely the conditions under which the model



tends to err, providing a characterization of its mispredictions.

However, producing such a rule with MMD is computationally

intensive and yields limited diagnostic quality: on our setup,

MMD required about 37 minutes and achieved only 0.186

precision and 0.443 recall.

We therefore introduce MMDFAST, a diagnosis approach
that retains the rule-level interpretability of MMD while
(i) drastically reducing runtime and (ii) improving the quality
of misprediction explanations. With MMDFAST, the same
task completes in under two seconds and improves to 0.344
precision and 0.617 recall, roughly doubling precision and
substantially increasing recall compared to MMD.

MMDPFAST extends the MMD framework in two significant
ways. First, to address the computational demands of rule
induction, we focus the search space by prioritizing only the
most influential features that correlate with mispredictions.
Concretely, we train an auxiliary model on the (correct vs.
mispredicted) labels to rank and retain only the top-k features.
This reduces the search space significantly and accelerates
rule learning while preserving the most informative properties.
Second, we enhance the rule construction process by utilizing
decision trees, aiming to improve the effectiveness of the gen-
erated rule sets. Decision trees, known for their interpretability
and robustness, can create more precise and understandable
rules. While enhancing the respective performance and pre-
dictive metrics, we also consider the length of the rule set to
maintain human interpretability and prevent data overfitting.

In summary, we make the following contributions:

Fast, Focused Explanations. We show that restricting rule
learning to a small set of %k influential features dramat-
ically reduces computational demand without degrading
explanation quality. An ablation over k finds that k=3
offers a strong accuracy—efficiency trade-off, with larger
k yielding diminishing returns.

Optimized Rule Construction. We replace costly rule in-
duction with limited-depth decision trees to generate con-
cise, interpretable rule sets. This design improves predic-
tive performance and guarantees readability by limiting
rule depth, yielding actionable rules that practitioners can
use to flag risky predictions, guide reviews, or trigger
fallbacks.

II. MISPREDICTION EXPLANATION GENERATION

Machine learning models often mispredict, and it is difficult
to determine when these models provide wrong predictions.
Misprediction explanation generation is a process that system-
atically produces rule sets that characterize where the model is
likely to mispredict [9]. Such rules make a model’s limitations
explicit, helping developers judge reliability and decide when
to trust, double-check, or override a prediction. In practice,
these explanations serve as actionable “red-flag” indicators:
when triggered, they warn practitioners to exercise caution,
request manual review, or collect additional data. The process
involves three main steps:

1) Labeling Mispredictions: The first step involves labeling

each prediction as either correct or a misprediction. This

labeling is based on comparing the model’s predictions
to the known ground truth.

2) Generating Atomic Predicates: Atomic predicates are
the basic building blocks for rule sets. They are derived
from the input data and consist of conditions based
on features, comparison operators, and values. These
predicates represent conditions such as files_removed > 2
that represent a subset of the input space.

3) Learning Rules: Using the labeled data and atomic
predicates, misprediction explanation generation employs
rule induction to iteratively build a rule set. The process
involves searching for the best-performing predicates that
cover the set of mispredictions. The work by Cito et al.
uses beam search to find the optimal rules in the search
space while balancing precision, recall, and rule size [9].

The rule construction is model-agnostic: it applies to any
classifier and produces concise, interpretable rules that surface
recurring misprediciton patterns. These explanations have been
shown to provide developers with tangible debugging insights
and improve trust in model predictions. However, scalability is
a major obstacle. Because current state-of-the-art approaches,
like MMD, generate predicates for every feature, runtime
grows quickly with feature count, limiting its usefulness in
practical debugging scenarios.

Our goal is to retain the interpretability and actionability
of MMD while addressing its computational bottlenecks.
Specifically, we aim to reduce runtime by focusing on only
the most influential features, while still achieving comparable
or better precision, recall, and rule quality.

III. APPROACH

In this section, we introduce MMDFAST, our approach for
constructing misprediction explanations of black box machine
learning models. Building on MMD, we aim to preserve its
interpretability while overcoming its main limitations: high
computational demand and poor explanation quality. MMD-
FAST addresses this challenge through two complementary
design choices: (i) minimizing computational demand by fo-
cusing only on the most influential features, and (ii) improving
explanation quality by replacing rule induction with decision
tree—based rule construction.

Reducing Computational Demand, Instead of generating
predicates for every feature, which quickly becomes
infeasible on feature-rich data sets, we identify and retain
only the features that most strongly drive mispredictions.
This reduces the search space and allows rule generation
to scale to larger data sets.

Improving Explanation Quality. Traditional rule induction
often yields either weak or overly complex rules. We
instead employ limited-depth decision trees that balance
precision and recall while explicitly limiting rule length,
thereby producing concise and human-readable rules.

A. Overview

Figure 1 shows how MMDFAST works. MMDFAST con-
sists of several key steps, starting with a trained model M
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Fig. 1. How MMDFAST works. Starting with a trained model M and labeled data set D, MMDFAST first identifies mispredictions, then extracts the most
influential features to reduce computational demand, and finally constructs rule sets using a decision tree. The final output is a rule set that explains the

mispredictions of the machine learning model.

and a labeled data set D, and culminating in the generation
of rule-based explanations of the mispredictions:

1) Label Mispredictions: @ Similar to MMD, MMDFAST
starts with a trained model and a labeled data set to iden-
tify instances in the data set where the model’s predictions
do not match the known ground truth (Section III-B).

2) Extract Influential Features: @ Then, to enhance scala-
bility, MMDFAST identifies the most influential features
contributing to the mispredictions. This is achieved by
training an auxiliary model to predict mispredictions and
using feature importance metrics to determine which
features have the highest impact (Section III-C).

3) Learn Rule Set: @ Next, MMDFAST uses a decision
tree to construct the misprediction rule sets. Our tech-
nique iteratively builds rules that explain mispredictions
by covering as many mispredicted instances as possible
while minimizing false positives (Section III-D).

Finally, the generated rule sets are formatted to provide a
uniform and interpretable output. This step ensures that the
explanations are easily understandable and actionable.

B. Labeling Mispredictions

Similar to MMD, given a trained model and labeled data set,
the process of labeling the mispredictions is straightforward.
Considering a labeled data set D: X — Y and a trained
machine learning model M: X — Y, where z € X is a
data instance and y € Y, y € {0,1} is the matched target
variable, and noting that D actually contains the ground truth
for its data instances, we define the misprediciton function
L: X —{0,1} as follows:

1 if M(z) # D(x)
0 otherwise

L(z) =

In words, the function L(z) is 1 if the prediction given by
the machine learning model for a data instance = does not
match the label found in the data set, which is the known
ground truth. In this way, we build a new data set Dy,;s: X —
{0,1} such that the following equation is valid:

Dpis(z) =1 <= M(z) # D(z)

The resulting new misprediction-labeled data set D, con-
tains each input instance in D but now linked to a new boolean
label, indicating whether the given instance is mispredicted
by the model. This newly constructed data set is essential
for extracting the most influential features and subsequently
assembling our misprediction explanations.

C. Extracting Influential Features

One of the major limitations of MMD is its high computa-
tional demand for large data sets, especially when the number
of features is extensive. This is because the number of potential
atomic predicates that need to be considered for rule learning
grows rapidly with more features.

To address scalability, MMDFAST focuses on the features
most strongly associated with mispredictions and discards less-
impactful ones. The idea is that only a handful of features are
needed to characterize mispredictions. We therefore train an
auxiliary model M’ on the newly constructed data set Dy
created in the previous step. The sole purpose of this auxiliary
model is to predict whether an instance will be mispredicted
by the original model M. Formally, the process can be defined
as follows:

1) Input: A labeled data set Dy : X — 0,1, where each
instance x € X is labeled as 1 if it is mispredicted by
the model and O otherwise; a machine learning model M’
used to predict the labels for Dy,s; and a chosen number
of influential features k.

2) Training an Auxiliar Model: Train a secondary machine
learning model M’, such as a random forest classifier or
neural network, on Dy, to predict whether an instance
will be mispredicted by the original model M. This cap-
tures the relationship between features and misprediction
likelihood. For feature importance, we use Gini Impor-
tance, which measures the average decrease in impurity
across all trees. Alternatives such as Permutation Impor-
tance, which evaluates performance drops under feature
permutation, and SHAP [7], based on Shapley values,
were considered, but preliminary experiments showed
Gini Importance to be most consistent and reliable.
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Fig. 2. Most influential features for mispredictions in the Python merge
conflict data set (k=3).

3) Calculating Feature Importance: Compute the feature
importance of each input feature f; using the Gini Im-
portance from M.

4) Selecting Influential Features: Ranks the features based
on their computed importance scores and select the top
k features with the highest importance scores, denoted as
Frr = {f1, f25- -5 fx}

5) Remove Unimportant Features: Remove the features
that are not part of Fpr from D,,;s.

6) Output: A reduced data set Dgg containing only the most
influential features Fggr.

By focusing on these key features, MMDFAST reduces
the number of features considered in subsequent steps, thus
lowering computational costs and improving efficiency.

Running Example: To illustrate how we select the most
influential features, we revisit the Python merge conflict
data set. After training the auxiliary M’ on Dy, we com-
pute the feature-importance scores. Figure 2 ranks all 28
features by importance and exhibits a clear long-tail pat-
tern: only a few features are truly dominant for mispre-
diction classification. Setting, for instance, k=3, we retain
parallel_changed_file_num (0.18), commit_num (0.07), and
line_added (0.06), while discarding the remainder. Guided by
this selection, subsequent rule learning focuses on these three
features, substantially shrinking the search space and yielding
much faster, more interpretable rules.

D. Learning Rule Sets

The core of MMDFAST is the generation of rule sets that
explain mispredictions. We detail how MMDPFAST constructs
these rules with a focus on precision, efficiency, and adequate
coverage of mispredicted instances.

1) General Rule Construction: The generall idea of our rule
construction approach is that we first construct an initial rule
aiming at covering as many mispredicted instances as possible
while minimizing false positives. Each rule consists of a series
of atomic predicates connected by conjunctions. A predicate
typically takes the form of a condition on a feature, such as
“feature > value”. Formally, the initial rule can be defined as:

Rlllelzpl/\Pg/\.../\Pn

where P; represents individual predicates.

Once the initial rule is constructed, it is added to the current
rule set. Subsequent rules are connected to the existing rule
set using disjunctions. The objective is to iteratively expand
the rule set until it achieves a predefined desired coverage of
mispredictions. The process involves:

1) Adding New Rules: After constructing a rule, it is added

to the rule set, which now takes the form:

Rule Set = Rule; V Rules V... V Rule,,

2) Coverage Calculation: The recall of the current rule
set, measuring the percentage of mispredicted instances
it covers, is calculated and compared against the desired
coverage.

3) Iterative Refinement: If the desired coverage is not
met, the process continues by iteratively constructing
additional rules. This involves creating a new data set
from instances not already covered by the current rule set
and generating new rules specifically for these remaining
instances.

2) Decision Tree Integration:. MMDFAST leverages deci-
sion trees to determine the rules for covering mispredictions.
The decision tree is trained on the data instances not covered—
for the initial rule, we use all data instances—by the current
rule set, using misprediction as the target variable. Each
iteration involves the following steps:

1) Training the Decision Tree: A new decision tree is

trained on the uncovered instances.

2) Extracting Predicates: Individual predicates are ex-
tracted from the decision tree by traversing its structure.
Each node in the tree represents a predicate.

3) Rule Evaluation: The performance of each rule is as-
sessed based on the number of mispredicted and correctly
predicted instances it covers.

3) Rule Selection and Optimization: The best performing
rule is selected by calculating Precision, Recall, and the
weighted Fj-Score, with the highest Fg-Score indicating the
best balance between precision and recall. The selected rule
is then added to the rule set. If the desired coverage is not
reached, the covered instances are removed from D, and a
new cycle begins. Mathematically, the weighted Fg-Score is
defined as:

Precision - Recall
Fg=(1+p%)-

(82 - Precision) + Recall

where [ is chosen such that recall is considered £ times as
important as precision.

4) Final Evaluation: The process continues until the de-
sired coverage is achieved. The final rule set is then evaluated
for Precision and Recall to ensure it accurately and compre-
hensively explains the mispredictions.

Running Example: The last step for our running example
involves constructing the final rule set with our decision
tree approach. Figure 3 shows the initial tree learned on the
reduced data set, containing just the most influential features.
The initial rule from this tree consists of the two predicates
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Fig. 3. Initial decision tree for the Python merge conflict data set.

parallel_changed_file_num > 0 and commit_num > 1. Re-
fining this initial rule results in the following misprediction
explanation: (parallel_changed_file_num > 0 N\ commit_num
> 1)V line_added > 23. Both MMD and MMDPFAST surface
parallel_changed_file_num as a primary factor of mispredic-
tions. The difference is that MMDFAST, after ranking features,
pairs it with line_added (rather than files_removed) because
line_added is scored as more informative for misprediction.
On our setup, MMDFAST learns this rule in under two second,
while MMD required about 37 minutes. The resulting rules
are short, easy to read, and, as shown in our evaluation, yield
much higher accuracy than the rule set produced by MMD.

Summary: MMDFAST improves the generation of mispre-
diction explanations for black-box machine learning models.
By optimizing rule generation and focusing on the most
influential features, we enhance the efficiency and quality
of explanations, making them more actionable and easier to
understand. Our versatile approach can be adapted to various
machine learning models and data sets for better model
diagnosis and improvement.

IV. IMPLEMENTATION

We have implemented MMDFAST as a Python library,
extending the framework of MMD. Similar to MMD, our
implementation takes a Pandas dataframe, a target variable,
and a set of optional parameters as input, and returns a set
of decision lists paired with precision, recall, and coverage
metrics. The primary parameters that need to be provided are:
the number k for selecting the most influential input features
(default is k=3), the desired coverage (default is ¢=0.6), and
the weight for the Fg-Score used to select the best-performing
rule (default is 5=0.5), slightly favoring precision over recall.

As our approach aims to improve computational efficiency,
we chose a random forest classifier as the auxiliary model.
Although other models, such as neural networks, can perform
better, random forests provide very consistent results and are
extremely fast. Our implementation supports the use of other
auxiliary models.

We utilized the Python library scikit-learn [12] to train
both the auxiliary model M’ and the decision trees for rule
construction. Both machine learning models are trained using
default settings. Additionally, for the decision trees, we allow
the tree depth to be defined by an input parameter, which
directly controls the maximum length of an individual rule
(default is d=2). This limits the rules extracted from the trees

TABLE I
EVALUATION SUBJECTS WITH NUMBER OF FEATURES, INSTANCES (INST.),
AND FEATURE DESCRIPTIONS.

Task | Feat. Inst. | Feature description
Bank marketing prediction with client
Bank . . X
. 20 6,797 demographics, contact/campaign details,
Marketing R
and macroeconomic indicators
Hotel booking records with guest de-
Hotel R . . .
Bookin 59 7,135 mographics, reservation details, booking
s history, and transactional attributes.
Spam Email Spam classification with anonymized
pam | 100 9,000 numerical features (f1-f99); feature se-
Detection . .
mantics are unspecified.
Water quality data set with chemical,
Water . . s
. 9 5,940 physical, and contaminant indicators for
Potability N .
potability prediction.
Heart Heart failure patient data with demo-
. 13 300 graphics, medical conditions, and clin-
Failure S
ical measurements.
Job change prediction data set with can-
Job didate demographics, education, experi-
13 5,748 .
Change ence, and employment history from a
data science training program.
Bug report closing time prediction using
Bug RePort 21 1,481 report metadata, user activity, project
Close Time - S
statistics, and process timing indicators.
Java 28 26,699 Merge conflict data set with file- and line-
Merge PHP 28 49,453 | level change statistics, developer activ-
Conflict Ruby 28 40,129 ity metrics, change type frequencies, and
Python 28 50,342 commit message characteristics.

to two predicates. To ensure transparency and reproducibility,
we have made MMDFAST and our complete evaluation pub-
licly available. This includes all means necessary to reproduce
the results presented in this paper.

V. EVALUATION SETUP

In our evaluation, we assess the performance of our ap-
proach MMDFAST compared to MMD by addressing the
following research questions:

RQ1 How does MMD with the most influential feature reduc-
tion (MMD+FR) compare to standard MMD?
RQ2 How does MMDFAST compare to MMD?

For RQI, we use the same rule induction approach in-
troduced by MMD and extend it with our feature reduction
(MMD+FR). For RQ2, we compare MMDFAST (which in-
corporates both the feature reduction strategy and the decision
tree-guided rule construction) to the standard MMD approach.

A. Evaluation Subjects

To answer the research questions, we evaluate our tool’s
misprediction rules on a set of test subjects introduced by
Gesi et al [13]. In total, we evaluate 11 real-world data sets,
encompassing both software engineering and non-software en-
gineering tasks. These tasks include: merge conflict prediction
for four programming languages (Java, PHP, Python, and
Ruby), bug report close time prediction, job change prediction,
bank marketing, hotel booking, water quality assessment, and
spam email detection. Unfortunately, we could not use the
subjects from the initial MMD evaluation, as they are part of
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Fig. 4. Feature importance distributions for all data sets (Python Merge Conflict in Figure 2). In most cases, a few dominant features stand out, while the
rest follow a long tail, supporting the choice of focusing on the top-3 features.

internal company data [9]. Table I shows all data sets with their

0.8
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To assess the performance of MMD+FR and MMDFAST, Fig. 5. Aggregated results for MMD+FR;, with different numbers of

we compare them to MMD [9]. We used the standard pa-
rameter settings of MMD, including the weights assigned
to precision, recall, and rule length when evaluating rule
performance. MMD considers rule set length, so the desired
coverage is not guaranteed and can be lower if too many
rules are needed to reach the specified coverage. Consequently,
MMD provides multiple possible rule sets, ranked primarily
by precision and secondarily by recall, reflecting the trade-
off between these metrics. For our evaluation, we selected the
highest-ranked explanation.

C. Research Protocol

To answer our research questions, we proceed in three steps:
First, train a random forest model M for each data set D and
split the data into training and test sets. Next, using the model
M and the training set, construct misprediction diagnoses with
MMDFAST and MMD, and record CPU time as a measure of

extracted features k over all subjects.

computational efficiency (Times for MMD+FR and MMD-
FAST include feature selection). Finally, we used the test set
to measure Precision, Recall, and Fi-Score. Precision is the
ratio of true positives to all predicted positives, Recall is the
ratio of true positives to all actual positives, and F;-Score is the
harmonic mean of precision and recall. These metrics measure
how well the constructed rules predict model mispredictions.

To remove the model variance, we used five-fold cross-
validation and repeated it five times with random seeds, which
is a common approach used by other studies [13]. Thus, this
procedure was repeated for each subject 25 times to account
for the variability in data splitting and learning of the ML
models, as well as variance in CPU time, ensuring reliable
conclusions. To answer RQ1, we assessed the reduction in
computational demand introduced by selecting the most influ-



TABLE II
COMPARISON OF PRECISION, RECALL, AND F1-Score FOR MMD AND
MMD+FR3. SIGNIFICANT RESULTS ARE BOLD.

. MMD MMD+FR3

Subject

Prec. Recall Fq-Score Prec. Recall Fq-Score
bank 0.355 0.685 0.459 0.344 0.705 0.456
bugreport  0.227 0.736 0.346  0.227 0.760 0.345
heart 0.465 0.800 0.600 0.450 0.750 0.563
hotel 0.195 0.877 0.319  0.202 0.812 0.324
java 0.195 0.373 0.246  0.179 0.402 0.247
job 0.317 0.625 0418 0413 0.456 10.432
php 0.136 0.627 0.226  0.155 0.509 *0.233
python 0.169 0.476 0.251  0.196 0.382 0.259
ruby 0.144 0.614 0.233  0.146 0.574 0.233
spam 0.379 0.624 10.472 0383 0.492 0.444
water 0.388 0.849 0.498 0.362 0.892 0.516

ential features, comparing the CPU times of both approaches.
To answer RQ2, we compared the overall predictive power
of MMDFAST’s misprediction diagnoses to those of MMD.
For both research questions, we applied the Mann—Whitney U
test [14] with a significance threshold of o = 0.05 to compare
the two approaches. Results that are statistically significant are
highlighted in bold and further annotated to indicate the level
of significance: * (p < 0.05), ** (p < 0.01), and f (p < 0.001).

The experiments were conducted on a compute server
equipped with an AMD EPYC 7713P processor (64 cores)
and 256 GB of system memory.

VI. EVALUATION RESULTS

In this section, we present the results of our evaluation. All
our results are detailed in Table II to Table V and Figure 4 to
Figure 6. Table II to Table V display the median results across
all subjects and runs.

A. RQI: MMD+FR vs. MMD

The first research question investigates whether our feature
selection strategy improves the performance of MMD. The
underlying hypothesis is that by focusing only on the most
relevant aspects of the misprediction, MMD+FR can produce
better rule sets much faster.

Since our feature selection strategy depends on the param-
eter k, which specifies the maximum number of features to
be selected, the first step is to analyze its influence. Figure 5
shows the aggregated results—F;-Score and CPU time—over
all 11 subjects for MMD+FR;, with ranging £ and MMD.
We observe that the F;-Score shows no significant difference
when measured across all subjects. However, the time required
to construct the misprediction diagnoses decreases with lower
values of k. This aligns with our expectations, as focusing
on the most influential features and discarding less impactful
ones reduces computational demand. For the remainder of
RQI1, we examine individual subjects in more detail. We use
MMD+FRj3 as the default, since it achieves F-Score com-
parable to the baseline while substantially reducing compute
time. Additionally, setting k=3 mitigates overfitting and keeps
rules concise by limiting the learner to at most three features.

TABLE III
COMPARISON OF CPU TIME (IN SECONDS) FOR MMD AND MMD+FR3.
SIGNIFICANT RESULTS ARE BOLD.

Subject MMD MMD+FR3 i:mptrov.
Total Total FR-Time actor

bank 791  1203.45 1.33 3.9
bugreport 352 737.58 0.89 9.4
heart 54  113.49 0.33 4.1
hotel 237 T47.57 1.45 5.0
java 2098  1424.38 1.46 49
job 144 79346 1.24 15
php 1877  1235.21 1.64 8.0
python 1944 1316.39 1.56 6.1
ruby 2277 143173 1.23 5.3
spam 635  764.93 12.37 9.8
water 94 11831 0.44 5.1

Figure 4 plots the feature-importance scores and highlights
the top three features MMD+FR 3 identified as most influential
for each data set. With the exception of water and spam, the
distributions exhibit a long-tailed, power-law shape. A few
dominant features stand out, while most others contribute little.
This pattern supports our hypothesis that only a small subset
of features is truly critical for explaining mispredictions. In the
merge-conflict data sets in particular, commit size and parallel
file changes consistently dominate, indicating that these factors
are the primary drivers of mispredictions.

Table II presents the achieved Precision, Recall, and F1-
Score for MMD and MMD+FR3 for all 11 subjects. The
median F;-Score ranges from 0.22 for PHP up to 0.60
for heart. Based on this comparison, we observe no con-
sistent outperformer between the two methods. A detailed
statistical analysis, supports these observations. Specifically,
MMD+FR3 performs better for the job and PHP subjects,
while MMD shows better results for the spam subject. For the
remaining subjects, no statistically significant differences were
observed between MMD and MMD+FR3. Thus, we conclude
that there is no overall performance difference between the two
approaches.

Focusing on the most influential features achieves similar
results (F1-Scores) to the baseline.

One of the primary goals of our feature reduction strategy
is to reduce computational demand. By narrowing the focus
to the most influential features, we reduce the number of
atomic predicates that need to be considered for rule induction,
i.e., the creation of the misprediction explanation. While
the F;-Score provides insight into the accuracy and balance
of Precision and Recall, it does not capture computational
efficiency directly. Hence, we also measured the execution
time required for both MMD and MMD+FR3.

Figure 6 displays the required execution time to construct
the misprediction explanations, with the results for all 11 sub-
jects and the required execution time in seconds on the y-axis
(log scale). This visual representation highlights the significant
computational efficiency improvement achieved by our feature
selection strategy. We observe that reducing the number of
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Fig. 6. CPU-time comparison between MMD and MMD+FR3 (log scale). Across all subjects, MMD+FR3 consistently runs faster than MMD.

TABLE IV
COMPARISON OF PRECISION, RECALL, AND F1-Score FOR MMD AND
MMDFAST. SIGNIFICANT RESULTS ARE BOLD.

. MMD MMDEFAST

Subject

Prec. Recall Fp-Score Prec. Recall Fp-Score
bank 0.355 0.685 0.459 0.385 0.643 10.486
bugreport  0.227 0.736 0.346  0.278 0.665 10.400
heart 0.465 0.800 0.600 0.577 0.652 0.588
hotel 0.195 0.877 0.319 0.203 0.850 *0.329
java 0.195 0.373 0.246  0.300 0.694 10.424
job 0.317 0.625 0418 0.322 0.687 **0.435
php 0.136 0.627 0.226  0.326 0.664 10.438
python 0.169 0.476 0.251 0.344 0.624 10.451
ruby 0.144 0.614 0.233  0.349 0.625 10.456
spam 0.379 0.624 0.472  0.355 0.835 10.499
water 0.388 0.849 0.498 0.403 0.821 *0.522

features significantly decreases computational demand across
all subjects.

The results in Table III confirm this observation. While
the median execution time for MMD ranges from around 54
seconds (heart) to 39 minutes (ruby), MMD+FR only requires
around 13 seconds (keart) to 7 minutes (ruby). Additionally,
Table III includes the time required to extract the most
influential features, which contributes minimally to the total
time but results in substantial overall improvement. The outlier
is spam, which has the most features (100). Moreover, Table III
shows the speed-up factor of MMD+FR compared to MMD.
Our approach achieves significant speed-ups, ranging from 1.5
times (job) to nearly 10 times for the large data set spam.

Focusing on the most influential features results in a
significant speed-up ranging from 1.5 to 9.8 times.

Our investigation into RQ1 shows that the feature selection
strategy incorporated in MMD+FR can significantly reduce
computational demand without a significant decrease in ac-
curacy. This demonstrates the effectiveness of focusing on
the most influential features to streamline the rule induction
process and enhance computational efficiency.

TABLE V
COMPARISON OF CPU TIME (IN SECONDS) FOR MMD AND MMDFAST.
SIGNIFICANT RESULTS ARE BOLD.

. MMD  MMDFAST  Improv.
Subject Factor
Total Total

bank 791 1.50 527
bugreport 352 11.04 338
heart 54 10.39 138
hotel 237 11.58 150
java 2098 t1.54 1,362
job 144 1.29 111
php 1877 173 1,084
python 1944 t1.62 1,200
ruby 2277 1.39 1,638
spam 635 112.40 51
water 94 10.49 191

B. RQ2: MMDFast vs. MMD

To answer RQ2, we compare MM DFAST—which combines
feature selection (k=3) with our decision-tree-based rule
construction—to the original MMD.! Table IV reports the
median Precision, Recall, and F1-Score across subjects. Over-
all, MMDFAST consistently outperforms MMD, achieving
significant improvements in 10 out of 11 data sets. Significant
results are shown in bold. Median F;-Score ranges from 0.32
(hotel) to 0.58 (heart), with notable gains such as Ruby (0.233
to 0.456, doubling the F;-Score by raising precision while
maintaining recall), Python (0.251 to 0.451, improvements in
both precision and recall), and Spam (0.472 to 0.499, higher
recall at a small cost in precision).

MMDFAST achieves higher F1-Score for almost all data
sets.

Beyond the improvement in F;-Score, we also investigate
the execution time of MMDFAST. Table V shows the required
CPU time for MMD and MMDFAST—including the feature

!Preliminary experiments showed that feature selection is crucial: it restricts
rule learning to the most relevant features, reducing overfitting and excluding
noisy variables.



reduction learning time. With the integration of both the fea-
ture selection strategy and the new rule construction approach,
we observe a substantial reduction in computational demand.
While MMD+FR (with just the feature reduction) already
improved execution time by up to 10 times, MMDFAST
further reduces computational demand by up to two orders of
magnitude. The statistical analysis confirms that MMDFAST
reduces computational demand for all subjects significantly.
Whereas MMD and MMD+FR required multiple seconds to
half an hour, MMDFAST consistently requires only a few
seconds. The exception is the extremely large data set spam,
where MMDFAST requires an average of only 12 seconds
compared to MMD’s 635 seconds (10 minutes).

MMDPFAST drastically reduces the time needed for all
subjects.

Summarizing the results of RQ2, we conclude that MMD-
FAST not only significantly improves the accuracy for most
subjects but also drastically reduces the time required to cal-
culate misprediction explanations. Thus, MMDFAST produces
better results much faster, making it a more efficient and
effective tool for generating misprediction explanations.

Based on our findings, we draw two main conclusions:

Decision Tree Rule Construction Our evaluation shows that
MMDPFAST consistently improves performance metrics
and significantly reduces computational demand com-
pared to MMD. This makes MMDFAST a highly ef-
fective and efficient method for generating misprediction
explanations.

Feature Selection Strategy Our method of utilizing the most
influential features significantly reduces computational
demand for generating misprediction explanations. This
reduction in computational demand enhances the scala-
bility and feasibility for use with large, feature-rich data
sets. This indicates that our feature selection strategy
is a crucial component in improving the efficiency of
misprediction explanation generation.

VII. THREATS TO VALIDITY

Internal Validity: The implementation details and parameter
settings for both MMD and MMDFAST pose a threat to
internal validity. We used default settings for the random
forest models and standard parameters for MMD, but different
configurations might yield different results. Computational
demand was measured by CPU time, excluding other factors
such as memory usage and parallel processing capabilities.
Including these factors in the future could provide a more
comprehensive assessment. Finally, we used impurity-based
feature importance for selecting influential features, which
has known biases [15]. Exploring alternative techniques could
validate the consistency and reliability of our approach.

External Validity: Selection bias may influence our results,
as we evaluated MMDFAST using 11 diverse real-world data
sets. Although these data sets cover various applications, their
specific characteristics could affect the outcomes. To mitigate
this risk, we used the same subjects as Gesi et al [13],

covering a diverse set of prediction tasks. Our evaluation
focused on random forest models, which may limit generaliz-
ability to other machine learning models like neural networks
or support vector machines. Future research should assess
MMDFAST across a broader range of models. Additionally,
domain-specific factors may affect MMDFAST’s effectiveness.
Investigating its performance in specific areas like healthcare
or finance could provide valuable insights.

VIII. DISCcUSSION
A. Interpretability & Actionability

Across data sets, the learned rules are short, interpretable,
and point to concrete “caution zones” where the trained models
are prone to error. A consistent pattern emerges in all merge-
conflict subjects (Java, Python, Ruby, PHP): rules include
parallel_changed_file_num, often combined with churn or tim-
ing signals. For instance, in PHP the rule parallel_changed_-
file_num > 0.5 N\ duration < 1.5 (recall 0.854, precision 0.325)
says that fast, multi-file commits are where mispredicitons
concentrate. This likely reflects interaction complexity and
rushed changes overwhelming simple predictors. Based on this
rule, some consequences could be to add CI gates (e.g., require
an extra reviewer or run conflict detectors) when the rule
fires, train a small specialized sub-model for high-parallelism
commits, or prioritize collecting more labeled examples from
high-parallelism regions to reduce uncertainty.

For the non-SE tasks the rules translate into equally ac-
tionable guidance. For the hotel data set, the rule lead_time
> 7.5 A lead_time < 228.5 (recall 0.846, precision 0.203)
captures a broad mid-range of bookings where the model
struggles. This again is useful to trigger additional checks,
while enriching features with seasonality or customer charac-
teristics to improve prediction. For the job change prediction
of data scientists, the rule (city_development_index < 0.632
A training_hours < 99.5) V experience < 5.5 (recall 0.684,
precision 0.325) indicates the model is less reliable for low-
experience/low-CDI candidate applicants. This could indicate
to gather more data from these segments, and run fairness
checks to ensure correlated socioeconomic variables are not
inducing systematic bias. Finally, for the heart failure data
set, time < 132 \V/ age > 68 V serum_creatinine > 2.7 (recall
0.87, precision 0.465) is clinically sensible (early time points,
elderly patients, kidney dysfunction) and marks cases where
a cautious workflow might be warranted. This could require
clinician confirmation, incorporating lab results, and enriching
training data for these cohorts.

In summary, the rules constructed by MMDFAST are both
interpretable and actionable: they highlight where additional
checks are needed, where targeted data collection can reduce
uncertainty, and where adapting the model (e.g., via special-
ized sub-models) may improve robustness.

B. Generalization of k-Influential Features

A central design choice in MMD+FR and MMDFAST
is to restrict rule learning to the top-k features that most
strongly drive mispredictions. Throughout this paper we have



used k=3, since our ablation study (see Figure 5) shows that
this value provides the best trade-off between efficiency and
predictive performance: smaller k values (e.g., k=2) reduce
recall, while larger k values yield only marginal accuracy gains
but increase runtime and rule complexity.

An important question is how well this choice generalizes
when data sets contain many potentially influential features.
Our experiments across 11 subjects with feature counts rang-
ing from 9 to 100 suggest that the dominant error patterns are
usually concentrated in a handful of features. For example, in
the SE data sets, rules almost always involve commit size and
parallel file changes, regardless of the total number of available
features. This stability indicates that focusing on a small &
captures the main conditions under which models fail, even in
high-dimensional settings. Further, even in subjects without
a pronounced long-tail distribution of feature importances
(e.g., water and spam), MMDFAST still achieved significant
accuracy gains over MMD, demonstrating that the approach
remains effective beyond clear power-law cases.

That said, we do not claim k=3 is universally optimal. In
domains with highly entangled or weakly informative features,
increasing k£ may be necessary to cover more nuanced error
modes. Our framework is flexible: practitioners can tune k
based on their tolerance for runtime overhead versus the need
for completeness.

C. Comparison with Other Approaches

For evaluating MMDFAST, we selected MMD as the base-
line due to its established methodology and comprehensive
framework for generating misprediction explanations, mak-
ing it a suitable reference for assessing improvements in
computational efficiency and rule quality. A closely related
approach is the work by Gesi et al. [13], which also leverages
feature bias for feature selection. However, a direct comparison
was not possible since their research artifact [16] includes
only evaluation data and not the necessary tools. Despite
this limitation, we evaluated MMDFAST on the data sets
provided by Gesi et al., as this ensures consistency with
prior work, demonstrates versatility across domains such as
software engineering and marketing, and provides a basis for
future benchmarking. In summary, while a direct comparison
with Gesi et al. was not possible, evaluating MMDFAST on
their data sets still demonstrates its applicability across diverse
domains and strengthens the credibility of our results.

IX. LIMITATIONS
A. Balance Precision, Recall, and Rule Length.

A fundamental challenge in generating misprediction expla-
nations is balancing Precision, Recall, and explanation length.
Focusing heavily on two of these characteristics inevitably
worsens the third: (i) Maximizing Precision and Recall leads
to long, overfitted rules that are complex and less interpretable.
(i1) Maximizing Precision while keeping rule sets short results
in low Recall, missing many mispredicted instances. (iii) Max-
imizing Recall while keeping rule sets short generally causes
low Precision, leading to many false positives.
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Adjusting the weights of these characteristics based on
specific use cases is crucial. Each option has its advantages
and disadvantages. MMD consistently provides concise ex-
planations by considering rule length, but this approach can
be computationally expensive and may not always satisfy
desired coverage. Our approach can produce misprediction
explanations quickly and often with better accuracy. However,
without fine-tuning, decision trees tend to generate longer rule
sets, as they may add high Precision but low Recall rules.

B. Feature Importance Measure

To identify the most influential input features, an explain-
able machine learning technique is necessary. We evaluated
three methods: (i) Feature importance based on feature per-
mutation, (ii) Feature importance with SHAP [7], and (iii) the
impurity-based feature importance (i.e., Gini impurity).

Initial experiments showed that SHAP values performed
slightly better than impurity-based importance. However, the
significant increase in execution time made SHAP impractical.
Impurity-based importance, despite its biases, was the most
feasible given our constraints. Permutation importance resulted
in poorer performance even after experimenting with different
permutations. Therefore, we settled on impurity-based feature
importance. Nonetheless, our tools would benefit from a faster
and more reliable feature importance measure. Future work
could explore advancements in feature importance techniques
that balance accuracy and computational efficiency.

X. RELATED WORK

The work presented in this paper relates to approaches that
detect, explain, and debug faults in machine-learning systems:

A. Testing of Machine Learning Components

There is a significant body of work related to the testing of
machine learning components [17]-[19]. The basic problem
of most of these approaches is the construction of test inputs
and providing an oracle to check if the test inputs are han-
dled correctly. For the construction of test inputs, traditional
software engineering techniques like grammar-based test-case
generation [20], fuzz testing [21], [22], concolic testing [23],
or search-based testing [24], [25] have been adopted. An-
other line of research for testing machine learning models
is to utilize adversarial examples [26]. Test case generation
approaches based on adversarial examples are used in different
application domains, such as image recognition [27]-[29], text
recognition [29]-[32], and speech recognition [33]-[36].

To tackle the oracle problem, metamorphic relations and
metamorphic testing have been adapted for testing machine
learning systems [37]-[39]. Besides metamorphic relations,
domain-specific oracles can also be used. An example is the
critical behavior like exceeding the speed limit or crashing of
an Advanced Driver Assistance System (ADAS) [40], [41].

However, despite all the significant advances in testing ML
components, merely providing a failed test case does not help
the developers of machine learning components understand



and fix the problem. This is why we have developed MMD-
FAST, which can be used to refine and cluster failed test cases
to present suitable debugging information to the developer.

B. Interpreting of Machine Learning Components

Interpretable machine learning is crucial as algorithms
impact significant decisions and enter safety-critical sys-
tems. Molnar provides a comprehensive overview in his
book [42] and paper [43]. Research splits into local and
global interpretability: local explains individual predictions,
while global addresses model behavior. Key local techniques
include LIME [8] by Ribeiro et al. and SHAP [7] by Lundberg
and Lee, which integrates LIME with Shapley Values [44].
However, these have drawbacks; LIME’s stability issues are
noted in [45], and [46] discusses exploiting LIME and SHAP
to hide biases. Improvements include stability indices [47],
ALIME [48], MeLIME [49], OptiLIME [47], and LIME-
SUP [50]. For global interpretability, SHAP, GALE [51], and
DENAS [52] identify influential features. Few studies, like
MMD [9], address the ground truth and conditions for model
mispredictions. Our work with MMDFAST draws from these
approaches, particularly from interpretable machine learning,
to extract the most impactful features. However, unlike these
interpretable machine learning approaches, we do not aim to
explain the entire behavior of the machine learning component.
Instead, for debugging purposes, we focus specifically on the
behavior where the machine learning component exhibits a
failure or misprediction.

C. Debugging of Machine Learning Components

More in line with our work to debug machine learning
components and identify groups of data causing mispredictions
is Errudite [53], proposed by Wu et al., which conducts error
analysis for NLP models. Errudite requires significant user in-
volvement in manually formulating hypotheses and evaluating
misprediction explanations. In contrast, our approach is mostly
automated and can be easily adapted to create misprediction
explanations for any underlying machine learner. Ma et al.
proposed a technique to automatically repair neural networks
called MODE [54]. They attempt to fix bugs by identifying
the model’s internal features causing incorrect results and then
selecting tailored training data to address these bugs.

Cito et al. [9] introduced MMD, which utilizes rule induc-
tion to develop an interpretable set of rules linking specific
feature values to potential inaccuracies in model predictions.
With MMDFAST, we address the high computational demand
and demonstrate that we can produce similar explanations
faster. Like MMDFAST, Gesi et al. [13] focus on the same
problem. They leverage feature bias to select important fea-
tures to narrow down the feature count, whereas we consider
feature importance to predict mispredictions.

A related line of work outside the ML-specific context is
AVICENNA [55], [56], a tool to explain program failures.
While AVICENNA targets general software debugging rather
than ML components specifically, it shares the goal of produc-
ing interpretable, rule-like explanations for erroneous behavior.
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XI. CONCLUSION

In this paper, we proposed MMDFAST, a efficient and
general approach to explain the mispredictions of ML models.
MMDFAST addresses two key issues of existing techniques:
extensive computational demand and lack of accuracy. By
identifying and focusing on the most influential features,
MMDFAST streamlines the rule construction process and
improves the accuracy and clarity of misprediction diagnoses.

We evaluated MMDFAST on 11 real-world data sets,
demonstrating that our feature selection alone can reduce
computational demand by up to tenfold without significant
loss in accuracy. Additionally, incorporating our improved rule
construction algorithm, MMDFAST produces more accurate
explanations and further reduces computational demand. With
MMDFAST, developers can obtain better diagnoses in seconds
compared to hours required by traditional methods.

Overall, MMDFAST enhances the scalability, efficiency, and
quality of generating misprediction explanations. Future work
can build on our findings to further refine feature selection and
optimize rule construction algorithms, ensuring more robust
solutions for explaining ML model mispredictions.

Rule Performance Measures Current rule performance
measures, such as the weighted F-Score used
by our approach and the Precision-Recall-Length
weighting in MMD, are somewhat basic. Developing
more sophisticated metrics that consider additional
characteristics like interpretability and robustness could
improve explanation quality.

Improved Feature Selection Our approach uses impurity-
based feature importance, which has known biases. Ex-
ploring more reliable and computationally efficient tech-
niques like SHAP, or other model-agnostic methods,
could enhance feature selection. This would also allow
the use of more complex models beyond random forests.

Optimized Rule Generation Our decision tree-based ap-
proach shows promise even without parameter tuning.
Further optimization, such as varying tree depths, using
ensemble methods, or incorporating bootstrap aggregat-
ing (bagging), could improve rule quality.

XII. DATA AND TOOL AVAILABILITY

Our evaluated MMDFAST artifact is publicly available. The
current versions of MMDFAST can be downloaded from:

https://github.com/martineberlein/mmdfast
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