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Abstract
Analyzing and modifying source code at the Abstract Syntax Tree
(AST) level is fundamental to numerous software engineering tasks,
including program analysis, instrumentation, and transformation.
While Java-specific tools exist, they often operate at the bytecode
level or are tightly coupled to the Java ecosystem, limiting their
flexibility and accessibility. In this paper, we present jAST, a Python-
based tool that generates and manipulates ASTs for Java programs.
By leveraging Python’s simplicity and extensive ecosystem, jAST
enables precise source-level analysis, seamless integration with
Python workflows, and support for advanced tasks such as fea-
ture extraction for debugging and learning-based failure analysis.
jAST is an open-source tool offering researchers, educators, and
practitioners an extensible framework for working with Java ASTs.

CCS Concepts
• Software and its engineering→ Syntax; Software libraries
and repositories; Software maintenance tools; Parsers.
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1 Introduction
Software development involves numerous tasks such as code anal-
ysis, transformation, and refactoring, which require an in-depth
understanding of program structure. Abstract Syntax Trees (ASTs)
are a fundamental representation of source code. They capture its
syntactic structure in a tree format widely used in compilers, pro-
gram analysis tools, and other software engineering tasks. ASTs
enable precise and efficient code manipulation by providing a struc-
tured, hierarchical representation of its elements.
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Figure 1: Overview of how jAST works. Java source code is
parsed into a Parse Tree using an ANTLR-based parser and
then converted into an Abstract Syntax Tree. The resulting
AST, a tree of Python objects, can be traversed, analyzed, and
modified using visitor and transformer patterns. Modified
ASTs can then be unparsed into Java source code, enabling
precise program analysis and transformations.

However, existing tools for generating ASTs for Java programs
frequently have significant limitations. Many tools operate primar-
ily on Java bytecode, which, while useful for specific analyses, does
not necessarily preserve a direct relationship with the source code.
This disconnect creates challenges for tasks that require source-level
understanding, such as fault localization and program instrumen-
tation. The absence of accurate and accessible source-level AST
generation limits the ability of developers and researchers to per-
form advanced analyses or modifications.

The ability to operate directly on source code and modify it has
broad applicability across various software engineering domains.
For example, instrumentation is essential for fault localization and
fuzzing tasks. Fault localization depends on source-level modifica-
tions to trace program behavior and pinpoint errors, while fuzzing
benefits from injecting input-tracking mechanisms directly into
source code. Tools enabling source-level program manipulation
significantly enhance workflows in these domains, offering greater
precision and flexibility than bytecode-level alternatives.

To address these challenges, we present jAST, a Python-based tool
for generating and analyzing ASTs from Java programs. Python’s
simplicity, extensive library ecosystem, and ease of integration
make it an ideal choice for building tools that support rapid pro-
totyping and experimentation. By bridging the gap between Java
program analysis and Python-based workflows, jAST facilitates a
wide range of applications, including (Static Analysis) extracting
program structure and dependencies to identify code smells or
enforce coding standards, (Program Instrumentation) modifying
source code to inject logging, tracking, or other functionality, and
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(Refactoring and Transformation) automating the process of code
simplification, optimization, or adaptation to new standards.

By focusing on the source code and leveraging Python’s usabil-
ity, jAST empowers developers and researchers to engage with Java
programs in novel and productive ways. It provides the founda-
tion for advancing software engineering practices, particularly in
areas relying on accurate source-level instrumentation. Figure 1
illustrates the workflow of jAST consisting of parsing Java source
code into a Parse Tree, converting it into an AST, and then allowing
users to traverse, analyze, and modify the tree.

In this paper we make the following contributions:

(1) jAST, a Python tool for AST representation of Java programs.
(2) Support of AST instrumentation aiming at advanced soft-

ware engineering tasks.
(3) An extensible and user-friendly framework.

The remainder of this paper is organized as follows: Section 2
provides the necessary background and Section 3 discusses related
work. Section 4 outlines the specification of jAST, while Section 5
details its design and implementation. Section 6 demonstrates the
usage of jAST and Section 7 explains the evaluation of out tool.
Finally, Section 8 concludes with a discussion of future directions.

2 Background and Problem
ASTs are data structures that represent the syntactic structure of
source code in a hierarchical tree format. They abstract away low-
level syntax details, focusing on the structural and semantic re-
lationships between code elements. For instance, in Java, an if
statement would be represented in an AST as a parent node with
child nodes for the condition and the body and an optional else.
This representation enables efficient static analysis, code transfor-
mation, and optimization. ASTs play a central role in numerous
software engineering tasks, including: (a) Compilers: ASTs form
an intermediate representation in parsing and semantic analysis.
(b) Static Analysis Tools: ASTs enable the detection of code smells,
bugs, and vulnerabilities. (c) Code Instrumentation: Source-level
ASTs are crucial for fault localization and input tracking, where
bytecode-level representation often falls short. (d) Program Trans-
formation: Refactoring and optimization tools rely on ASTs to
ensure transformations preserve program semantics.

Many existing tools, such as ASM [1], operate on Java bytecode,
enabling transformations at the compiled level. While bytecode-
based instrumentation is effective for some tasks, it lacks a direct
mapping to the source code, creating challenges for (a) source-
level fault localization, where developers need precise correlations
between source lines and execution traces and (b) advanced tech-
niques like fuzzing, where input generation and tracking often
require access to source-level constructs.

Tools that generate ASTs directly from source code provide better
support for these tasks. For example, source-level transformations
can ensure that injected logging or instrumentation is understand-
able and maintainable for developers.

Python has emerged as a popular choice for building software
engineering research and development tools due to its simplicity,
flexibility, and extensive library ecosystem. Existing Python-based
tools like javalang [22] provide limited support for parsing Java

code and lack the extensibility and precision required for source-
level instrumentation and transformation. By providing a Python-
based framework for Java AST generation, jAST enables researchers
and developers to (a) leverage Python’s libraries for advanced anal-
ysis (e.g., NumPy, pandas), (b) quickly prototype and experiment
with AST-based workflows and (c) facilitates cross-language tool
integration, bridging gaps between Java and Python ecosystems.

Unlike existing tools, jAST focuses on bridging the gap between
Java source-level AST generation and Python-based workflows. By
prioritizing simplicity, extensibility, and integration, jAST provides
a flexible platform for research and practical applications in fault
localization, fuzzing, and static analysis.

3 Related Work
Analyzing and manipulating source code at the Abstract Syntax
Tree (AST) level is fundamental in software engineering, with nu-
merous tools and frameworks developed across programming lan-
guages. Below, we survey relevant work and position jAST within
the existing landscape.

Tools like Eclipse JDT [12] and Spoon [16] are prominent for Java
AST analysis and transformation. Eclipse JDT provides parsing and
manipulation capabilities but is tightly coupled with the Eclipse IDE,
limiting its flexibility outside IDE-based workflows. Spoon offers
fine-grained source-level transformations and is widely adopted
in research and industry; however, it is inherently tied to the Java
ecosystem, requiring expertise in Java-specific workflows.

Bytecode manipulation frameworks such as ASM [1] enable
instrumentation and dynamic analysis of Java programs. These
tools operate at the bytecode level, offering performance advantages
but sacrificing the ability to perform precise source-level analysis,
which is often critical for debugging and program comprehension.

The emergence of polyglot software systems has driven the de-
velopment of cross-language AST frameworks like Tree-sitter [2],
which supports efficient parsing for multiple programming lan-
guages. While Tree-sitter excels in syntax highlighting and ex-
tensibility, it provides limited functionality for in-depth program
analysis or transformations specific to Java.

Python’s versatility has led to tools such as LibCST [4] and
astroid [11], focusing on Python-specific AST (or concrete syntax
tree) manipulation with user-friendly interfaces. However, these
tools do not extend their capabilities to languages like Java, creating
a gap for cross-language workflows.

Beyond these, tools like ANTLR [14, 15] provide parser gen-
eration for numerous languages, including Java and Python, but
lack direct AST manipulation capabilities. IntelliJ IDEA’s PSI [8]
offers advanced Java code insight features, but it is proprietary and
confined to the IntelliJ environment.

Tools such as Babel [13] for JavaScript and Roslyn [6] for .NET
languages showcase the importance of providing language-native
AST frameworks. However, these tools are not designed for cross-
language use or Java-specific needs. Frameworks like CheerpJ [21],
which translate Java bytecode into JavaScript, also demonstrate
innovative cross-platform approaches but do not address source-
level manipulation. Additional tools and frameworks have emerged
to address specific needs in AST analysis. JavaParser [23] offers a
lightweight Java library for parsing and manipulating Java source
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code, facilitating tasks like code generation and analysis. PMD [10]
is a static code analyzer that uses ASTs to detect programming
flaws, such as unused variables and empty catch blocks. Check-
style [7] focuses on enforcing coding standards by analyzing the
AST structure of Java code. For more advanced analysis, tools like
ACER [3] to extract call graphs from ASTs and PSIMiner [20] to sup-
port machine learning assist in understanding program structure
and dependencies.

These tools highlight the diverse applications of AST analysis
for Java, ranging from code quality enforcement to facilitating
complex program analyses. jAST differentiates itself by offering a
Python-based approach to Java AST manipulation, bridging the gap
between Java codebases and Python’s extensive analysis ecosystem.

4 Specifaction
Figure 2 shows an excerpt of the specification of jAST. The speci-

fication defines the structure of the AST nodes that jAST generates.
The AST nodes are orientated toward Python’s ast module, which
makes it easy to work with the generated ASTs in Python.

5 Design and Implementation
jAST is designed to provide a lightweight and extensible framework
for generating and manipulating Java Abstract Syntax Trees (ASTs)
in Python. We rely on ANTLR [14, 15] to parse Java source code into
a Parse Tree. Using ANTLR allows us to easily update the grammar
for new Java versions and generate a parser for the Java language.
The Parse Tree is then converted into an AST, represented as a tree
of Python objects, similar to Python’s built-in AST module.

This design enables users to traverse, analyze, and modify the
AST using Python’s intuitive syntax and extensive library ecosys-
tem. The resulting AST can be transformed using visitor and trans-
former patterns, allowing users to extract information, perform
analyses, and modify the tree structure. Finally, the modified AST
can be returned to the Java source code, preserving all modifications
made to the tree.

6 Usage
jAST provides an intuitive and Pythonic interface for analyzing and
modifying Java Abstract Syntax Trees (ASTs). The tool allows users
to parse Java source code into an AST, traverse and modify the
tree, and convert the modified AST back into Java source code. This
section describes its installation, key functionalities, and usage.

Installation. jAST is available on the Python Package Index (PyPI)
and can be installed using the following command:
pip install java-ast

Parsing Java Source Code. Java source code can be parsed into
an AST using the parse() function. The resulting tree consists of
objects whose classes inherit from jast.JAST. For example:
import jast

# Parse a Java source file
with open("HelloWorld.java") as file:

tree = jast.parse(file.read())

Here, tree represents the AST of the Java source code.

1 -- builtin types are:

2 -- identifier , int , float , bool , char , string
3

4 module Java {

5 mod = CompilationUnit(Package? package ,

6 Import* imports , declaration* body)

7 | ModularUnit(Import* imports , Module body)

8

9 declaration = EmptyDecl ()

10 | CompoundDecl(declaration* body)

11 | Package(Annotation* annotations , qname name)

12 | Import(bool? static , qname name ,

13 bool? on_demand)

14 | Module(bool? open , qname name ,

15 directive* directives)

16 | Field(modifier* modifiers , jtype type ,

17 declarator+ declarators)

18 | Method(modifier* modifiers ,

19 typeparams? type_params ,

20 Annotation* annotations , jtype return_type ,

21 identifier id, params? parameters ,

22 dim* dims , qname* throws , Block? body)

23 | Constructor(modifier* modifiers ,

24 typeparams? type_params , identifier id,

25 params? parameters , Block body)

26 | Class(modifier* modifiers , identifier id,

27 typeparams? type_params , jtype? extends ,

28 jtype* implements , jtype* permits ,

29 declaration* body)

…
32 attributes(int lineno , int col_offset ,

33 int end_lineno , int end_col_offset)

…
41 stmt = Empty()

42 | Block(stmt* body)

43 | Compound(stmt* body)

…
50 | If(expr test , stmt body , stmt? orelse)

51 | Switch(expr value , switchblock body)

52 | While(expr test , stmt body)

…
62 | Expr(expr value)

63 | Return(expr? value)

64 | Yield(expr value)

65 | Break(identifier? label)

66 | Continue(identifier? label)

67 | Synch(expr lock , Block body)

68 attributes(int lineno , int col_offset ,

69 int end_lineno , int end_col_offset)

70

71 expr = Assign(expr target , operator? op, expr value)

72 | IfExp(expr test , expr body , expr orelse)

73 | BinOp(expr left , operator op, expr right)

74 | InstanceOf(expr value , (jtype | pattern) type)

75 | UnaryOp(unaryop op, expr operand)

76 | PostOp(expr operand , operator op)

…
83 | Constant(literal value)

84 | Name(identifier id)

85 | ClassExpr(jtype type)

…
92 attributes(int lineno , int col_offset ,

93 int end_lineno , int end_col_offset)

…

Figure 2: Excerpt of the specifaction of jAST.This excerpt does
not represent the Java grammar but the type structure of the
AST nodes.
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VisitingNodes in theAST. jAST provides a visitor pattern for travers-
ing the AST. For instance, the following code demonstrates how to
print the names of all classes in the parsed tree:
class NameVisitor(jast.JNodeVisitor):

def visit_Identifier(self, node):
print(node.name)

visitor = NameVisitor()
visitor.visit(tree)

In this example, the visit_Identifier() method is invoked for
each Identifier node in the tree, allowing users to extract infor-
mation from specific nodes.

Modifying Nodes in the AST. jAST also supports transformations of
the AST using a node transformer. For example, to rename a class:
class NameModifier(jast.JNodeTransformer):

def visit_Identifier(self, node):
if node.name == "HelloWorld":

node.name = "HelloWorld2"
return node

modifier = NameModifier()
tree = modifier.visit(tree)

This example demonstrates a transformation that renames the class
HelloWorld to HelloWorld2.

Writing Modified Java Source Code. Once modifications are
made, the updated AST can be written back to Java source code
using the unparse() function:
with open("HelloWorld2.java", "w") as file:

file.write(jast.unparse(tree))

The unparse() function converts the AST back into valid Java
source code, preserving all modifications.

Helper Functions and Extensibility. jAST includes various helper
functions to simplify AST manipulation. These features make jAST
an ideal choice for tightly integrated workflows with Java, enabling
tasks such as program analysis, instrumentation, and source-level
transformation.

7 Evaluation
We evaluated jAST by applying it systematically to each possible Java
declaration, statement, and expression, including various values
and operators. We distinguished between parsing strings to ASTs
and the ASTs themselves and unparsing the ASTs to verify the
correctness of all tool parts. We produced unit tests for all these
cases, resulting in an extensive test suite covering all aspects of the
tool (indeed, we achieved 100% Moreover, we evaluated our tool
on a set of real-world Java projects, including open-source libraries
and applications from the Defects4J benchmark [9], to assess its
usability in practical scenarios.

The evaluation demonstrated that jAST successfully parsed Java
source code into accurate AST representations, allowing for precise
analysis and modification. The tool’s performance was satisfactory,
with parsing times comparable to the existing javalang [22] and
unparsing times even faster. However, since, to the best of our
knowledge, jAST is the first tool to provide a Python-based AST

unparsing for Java, we could not compare it to other tools. With
this evaluation, we are convinced that jAST is a valuable addition
to the software engineering tool landscape, providing a flexible
framework for Java AST manipulation.

8 Conclusion and Future Work
In this paper, we presented jAST, a Python-based tool for generating
Abstract Syntax Trees (ASTs) from Java source code. jAST bridges
the gap between Java source-level program analysis and Python-
based workflows, enabling researchers and developers to perform
advanced program analysis, instrumentation, and transformation
tasks efficiently. By leveraging Python’s simplicity and extensive
ecosystem, jAST offers a lightweight framework that facilitates cross-
language workflows and supports various applications, such as fault
localization and static analysis.

Our framework has several advantages over existing tools, in-
cluding: (1) Precise source-level AST generation, avoiding the limi-
tations of bytecode-level tools. (2) Integration with Python libraries,
enabling rapid prototyping and advanced analysis workflows. (3) Ex-
tensibility, making it suitable for educational purposes, research,
and industry applications.

The current implementation of jAST opens up numerous possibil-
ities for future work, leveraging its capabilities to address advanced
challenges in program analysis and debugging:

Feature Extraction for Debugging We are currently working
on extracting execution features, such as variable usage pat-
terns, control flow properties, and function call relationships,
to assist in debugging and fault localization by integrating
jAST into SFLKit [19] and our debugging pipeline [5, 17] that
identifies failure patterns and learn from these features, aid-
ing in automated failure prediction and debugging for input
and execution space, which allows to run it on benchmarks
like Defects4J [9] instead of Python benchmarks [18, 24].

Dynamic Instrumentation We want to expand jAST to support
dynamic instrumentation, enabling real-time tracking of exe-
cution paths and runtime states for debugging and profiling.

Semantic Analysis We plan to leverage jAST to perform deeper
semantic analyses of Java programs, such as type inference,
dependency tracking, and detection of semantic errors.

Tool and Data Availability Statement
Our tool is available as open-source:

https://github.com/smythi93/jast
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