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Abstract. Over the last decades, automated program repair has emerged
as one of the most prominent research areas within automatically debugging
defects. Despite newer advances in learning-based and pattern-based repairs,
former search-based strategies are still widely adopted and follow a clear
structure, wherein patch candidates are iteratively generated and validated.
Before the first generation of candidates, fault localization identifies faulty
code lines based on an existing test suite. Throughout the repair process,
each iteration validates the candidates, enabling it to refine the population
via genetic programming.

Both fault localization and validation rely heavily on test cases, which
can be generated automatically. In principle, more test cases should help
fault localization pinpoint the location of the defect, while validation should
become more precise, enhancing the genetic algorithm. Both aspects
should result in better patches and higher repair success rates. However,
prior studies have shown, that this is not necessarily the case—this thesis
aims to break down, how exactly additional test cases affect search-based
program repairs. For that, Genprog is used from the novel program repair
framework FixKit to evaluate eight bugs in total, including four example
programs and one real-world defect, under various configurations.

In particular, the effects on fault localization and validation are evaluated
separately, demonstrating where additional tests yield the most signifi-
cant change. This approach reveals that increasing the number of test
cases during validation effectively eliminates overfitted patches, whereas
test-enhanced fault localization provides no noticeable improvements. Mod-
ifying the way code locations from fault localization are utilized results
in better success rates for incorporating large test suites, which otherwise
produce ineffective repairs. While the addition of tests leads to only a slight
increase in repair time for fault localization, the impact is considerably
more pronounced when incorporated iteratively for patch validation.
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1 Introduction

Fixing bugs in software is often an intricate task, including finding, analyzing and
solving the failure without introducing unwanted behavior. Therefore, it relies on many
parts to function with many parameters to refine. As for automated search-based repairs,
they follow similar steps a human would take when debugging a fault. They begin
by defining what makes a bug faulty, outlining which behavior is expected and which
causes problems. This separation is achieved through specifying a test suite and oracle.
For system tests, generating test cases is often trivial—failing and passing inputs can be
used, the creation of a sufficient oracle is generally more challenging though. Once an
appropriate test suite and oracle is in place, fault localization approaches can find code
lines which have a high likelihood of contributing to the faulty behavior. Then, based on
these code lines the program is mutated, which creates an alternated version of it, also
called a patch candidate. By validating the candidate against the test suite, it can be
inferred whether the candidate fixed the fault (whenever all test cases pass). However,
fixes are only specified as valid based on the provided test suites and oracle, which
often results in overfitted patches. They only satisfy the defined constraints, possibly
generating faulty, incomplete or even harmful code. Several studies [20, 23, 31, 32]
concluded that generate-and-validate approaches like Genprog [29] produce significant
amounts of overfitted patches, from which the genetic refinement suffers the most.
Genprog uses a fitness score as the heuristic function to guide the generation of
new patch candidates, improving them iteratively by selecting the ones with the best
fitness and producing crossover candidates. Whenever an overfitted patch occurs, the
validation assigns it a high fitness score, thus leading to the selection and refinement
of further overfitted patches. If the fitness score of a patch candidate reaches 1, the
repair is stopped and the candidate is returned as an optimal patch.

Throughout the entire process of generating and validating patches, a test suite is
indispensable for the repair, but the amount of test cases seems to play a secondary

Figure 1: Conceptual structure of generate-and-validate repairs, highlighting the im-
portance of test cases.
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role. As prior studies [13,34] have shown, additional test cases do not strongly correlate
with the repair’s success rate but are beneficial in reducing overfitted patches [31,32].
Nonetheless, due to the incomplete nature of test suites, automated repairs struggle to
find generalized solutions [34]. Although these studies have shown no clear correlation
between additional test cases and repair success rates, it is not entirely obvious why.

During this bachelor’s thesis, the automated program repair collection FixKit [25]
was extended to allow an easy evaluation of the subjects implemented in Tests4Py [24].
With automatically generated test cases through a grammar-based fuzzer by ISLa [27],
different repair configurations can be evaluated. In particular, the evaluation utilizes
test cases separately in the fault localization and validation portions of the repair
process. This allows for a more detailed analysis to observe whether the implemented
fault localization techniques can be enhanced and result in higher repair success rates, as
well as to confirm whether more test cases in the validation process eliminate overfitted
patches. In total, this thesis provides the following contributions:

Evaluation of FixKit. The novel repair framework FixKit [25] was evaluated using
eight bugs from four toy subjects and one real-world defect, all implemented in
Tests4Py [24]. Since both tools may lack verification for validity, this thesis also
examines whether their combination can be effective in evaluating and analyzing
automated program repair.

Differences in Effectiveness. To directly demonstrate the impact of additional test
cases on different stages of the repair process, this evaluation separates fault
localization and validation in terms of the tests used.

Modification of Code Locations. Initial evaluations indicated a decline in repair
performance with larger test suites, partially due to how suggestions from fault
localization were applied. By modifying how FixKit utilizes these suggestions,
this evaluation provides further insights into their impact on repair effectiveness.

Evaluation Pipeline. An evaluation pipeline was implemented following the modular
structure of FixKit. This design facilitates further experimentation with vari-
ous configurations, such as different numbers of test cases or alternative repair
approaches.

Note. In this paper, the term test cases is used interchangeably with inputs,
since the generated inputs can directly be used as system test cases. To define
the correctness of inputs, an oracle is provided, which tells the program whether
an input classifies as failing or passing. Moreover, tests is used as a shortened
form of test cases, but holds the same meaning.

Structure. Section 2 presents the background for this thesis, explaining what ap-
proaches and tools are relevant for the evaluation. In Section 3, the types of automated
program repair are described and what challenges are given with search-based repairs
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concerning the use of test suites. Section 4 describes the implementation of the eval-
uation pipeline along the repair process, going into detail where and how test cases
might affect the repair. Moreover, it explains why the suggestions of fault localization
led to ineffective repairs and how modifiers can change this behavior. Next, Section 5
elaborates on how the produced patches are evaluated, showing the concrete setup
in Subsection 5.2. The evaluation results are presented in Section 6, answering three
research questions, and discussed in Section 7. The threats to validity can be found
in Section 8, whereas Section 9 concludes this thesis by giving a summary and an
overview of possible future work.

2 Background

This section provides background on the approaches and tools relevant to the imple-
mentation and evaluation of this thesis.

Automated Program Repair. This thesis mainly builds on top of the repair frame-
work named FixKit [25], which implements the search-based repair approaches Gen-
prog [29], Mutrepair [5], Kali [21], Cardumen [16] and Ae [28] in Python. The
core functionality, it being genetic program repair guided by a heuristic function, is
shared among the different approaches. Its modular structure facilitates the extension
of further approaches regarding the repair method, fault localization, fitness metric and
validation engine. These parts of the repair are interchangeable, enabling it to evaluate
various configurations. It comes with direct support for using the testing framework
Tests4Py [24], which allows the validation engine to calculate the fitness scores without
further implementations.

The evaluation was limited to one repair approach due to the high number of
configurations required for notable insights. The choice fell on Genprog [29] since
it performed the best in early experiments and supports the best integration with
system test cases out of the box, while other repair approaches in FixKit would have
needed further implementations to function reliably. Genprog was one of the primary
approaches to lead genetic search-based repairs in 2011, introducing a fitness heuristic
to improve patches over multiple iterations. Subsection 3.1 gives an overview of the
current types of program repair, while Subsection 4.2 details how FixKit implements
Genprog.

Testing Framework. The testing framework Tests4Py [24] is directly supported in
FixKit [25], allowing for easy integration and evaluation of the subjects implemented
in Tests4Py. The framework is derived from BugsInPy [30] and tries to address the
limitations of inadequate system oracles and sparse unit tests. Every subject features
faulty versions of a program, together with predefined unit tests, system tests, oracles
and grammars. In total, four example programs (toy subjects) are included, which can
easily be debugged and may give conceptual insights, as well as seven real applications.
Due to complications with generating inputs and inconclusive repair results, only
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the toy subjects and two bugs from the real-world program Pysnooper [22] could be
evaluated.

Moreover, Tests4Py provides functional grammars and oracles not suitable for
grammar fuzzing due to a verbose structure. debugging-benchmark [6] is a tool, which
was directly developed to solve this issue by acting as a harness for Tests4Py. It
implements the subjects with simpler grammars and hand-defined initial inputs, which
were important for using approaches like Avicenna [7] to generate inputs.

Grammar Fuzzing. In this thesis, a grammar fuzzer is used to generate inputs for the
test suites. The specific grammar fuzzer is provided by ISLa [27], which reimplements
the code from the Fuzzing Book [35] with optimizations such as using custom derivation
tree objects and an iterative traversal, which is supposed to increase performance.
In detail, the grammar fuzzer builds a derivation tree, from which the leaves, that
represent the terminal symbols, can be concatenated and read as a fuzzed string. To
build the tree, each non-terminal acts as a node which can be expanded according to
the possible expansions given through the grammar. A simple strategy would be to
randomly choose an expansion for every node, but this might lead to long recursive
loops, which are unnecessary.

The grammar fuzzer follows a more effective strategy, which chooses the expansions
based on a cost function. The cost for an expansion is calculated by the sum of the
symbol cost of each non-terminal in the expansion, while the symbol cost is calculated
from the minimum cost of all possible expansions. Whenever a symbol that was already
seen is encountered again, the cost is set automatically to infinite. This is a recursive
way to find the expansion with the lowest cost, which collapses the tree. With that
approach, the number of non-terminals will always decrease if the grammar is valid,
eventually ending in only terminal symbols. However, to generate diverse results, the
grammar fuzzer utilizes a three-way strategy:

1. The tree is expanded with a maximum cost function until a certain minimum
number of non-terminals are present.

2. The tree is randomly expanded until a certain maximum number of non-terminals
are reached.

3. The tree is closed up with the before-described minimum cost expansion.

This forms an efficient way to fuzz inputs from a grammar. A more detailed explanation
can be read in the Fuzzing Book1 [35].

Automated Bug Diagnoses. Instead of using a grammar fuzzer, this thesis first
aimed to use a novel approach named Avicenna [7] to generate inputs. Avicenna
combines the ideas of Alhazen [11] and ISLearn [27] to produce automated bug
diagnoses, which are compromised of failing constraints based on a defined grammar.

1https://www.fuzzingbook.org/html/GrammarFuzzer.html, 20.02.2025
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While this is particularly interesting as a way to describe bugs in a language (namely
the ISLa [27] language), which can be read by humans and processed by computers, this
also provides an opportunity to generate inputs, which are directly tailored to the input
constraints of a bug. Tools like the ISLaSolver [27] can generate new inputs from the
produced bug diagnoses, having better chances of finding faulty inputs. However, after
some experiments, issues led to the choice of using the grammar fuzzer as a more simple
and reliable method for generating inputs. Subsection 4.1 explains some methods of
generating inputs in more detail.

3 Related Work

3.1 Types of Program Repair

Automated program repair, in its most fundamental form, involves receiving a defective
program as input and generating a patch that represents a corrected version of that
program. To accomplish this, the repair usually infers information from other techniques,
such as fault localization. As outlined in the introduction, search-based repairs work
on the premise of finding the location of the fault, generating a patch candidate and
validating it against a test suite. Search-based repairs often leverage the capabilities
of genetic programming by utilizing heuristic metrics to evaluate patch quality and
iteratively refine candidates. Since the introduction of Genprog [29] in 2011, which
popularized this strategy, numerous other repair types have emerged.

As an alternative to search-based repairs, semantic-based repairs like SemFix [18]
arose in 2013. While these approaches also use fault localization to rank program
statements based on their suspiciousness scores, they employ static symbolic execution
with the ranked statements and a test suite as inputs. Symbolic execution is able to
extract repair constraints, which can be transformed into a repair by solving them
via program synthesis—the Z3 SMT solver [4] is used in the case of SemFix. When
evaluated against Genprog [29], the original study on SemFix [18] reported equal or
improved success rates.

Around the same time, pattern-based repairs like Par [12] shifted the focus to human-
readable patch generation. Unlike former approaches that directly mutated code lines,
often leading to redundant or difficult-to-interpret modifications, pattern-based repairs
use code templates to alternate the program’s behavior. In the case of Par, fault
localization is employed as the first step, after which an analysis process scans the
program’s abstract syntax tree (AST), analyzing the identified fault location and its
adjacent locations. If the scanned code lines match a template, Par rewrites the AST
based on the predefined editing script in the templates. Similarly to Genprog [29],
the patch candidates are validated and used for an evolutionary feedback loop. While
Par can incorporate human-written templates and generate more readable patches, it
is evaluated to only perform marginally better than Genprog [12].

More Recently, a large quantity of learning-based strategies have been proposed
that use machine learning to enhance automated repairs. For example, DeepFix [9]
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was introduced in 2017 and directly repairs faults by predicting patch candidates
through deep learning approaches, similarly, DeepRepair [33] and Dear [15] are newer
approaches that enhance the use of deep learning in automated program repair. The
use of machine learning has been a focal point of research over the past years, especially
with the rise of large language models (LLMs) that commonly utilize transformer
neural networks. Fittingly, in 2021 TFix [3] was proposed, which directly leverages the
powerful tranformer-based models pretrained on natural language to generate patches
text-to-text.

Despite many new advances in repair approaches and impressive enhancements, each
comes with its own set of challenges. As for search-based repairs, they still provide
versatile functionality that works with minimal input data and offers a clear structure.
This allows researchers to understand the fundamentals of generating patches, how to
approach challenges and find solutions across multiple repair types. For most forms of
program repair, the test suites either play a superficial role or do not benefit from a
larger size. Many studies looked into this behavior for search-based repairs, as explained
in the next subsections.

3.2 Effectiveness of Test Suites

In their study, X. Kong et al. [13] found no clear correlation between increasing the
test suite size and the success rates of genetic search-based repair techniques. However,
their analysis of brute-force and adaptive repair techniques—alternative approaches
to the genetic search—revealed more notable trends. Specifically, as the number of
failing tests increased, the success rates of these techniques showed a declining trend.
In contrast, the addition of passing tests resulted in either stable success rates or only
a slight decrease.

Their theory on the impact of larger test suites is described as twofold: (1) Larger
test suites inherently increase the difficulty of all test cases passing the validation,
thereby lowering the reported success rates. This is a reasonable assumption, as larger
test suites introduce additional constraints the repair must satisfy. However, evaluating
only the tool-reported success rates does not capture patch quality. As explained in
the following subsection, while smaller test suites may lead to higher success rates,
they are also more susceptible to overfitting. Notably, their findings apply only to
tool-reported success rates, which included overfitted patches. In contrast, no clear
relationship between test suite size and the actual repair success rate (when assessed
by humans) was observed across all evaluated techniques.

(2) Another observation in their study is that an increase in the number of passing
test cases enhances fault localization, thus overcoming the stricter requirements for
patches to pass due to the larger test suite, resulting in a stable trend. However, a
separate study by Y. Lei et al. [14] found no strong correlation between test suite
size and the effectiveness of fault localization performance. Instead, they found a
positive impact on fault localization coming from passing tests that do not execute
the faulty statements and failing tests in general, while passing tests that exercise the
faulty statements harm effectiveness. This partially contradicts the earlier findings
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of X. Kong et al. [13], where failing tests did not appear to contribute positively to
localizing and repairing the fault.

Accuracy of Fault Localization. A study [2] on the accuracy of spectrum-based
fault localization reported a detailed analysis of the effect of failed and passed runs:
R. Abreu et al. observed that only a few failed runs (around 6) are enough to reach
near-optimal diagnostic performance, with more failed runs below that threshold only
accumulating the performance. However, the effect of including more passed runs was
observed to be unpredictable, either improving or degrading diagnostic performance.
Including more than about 20 passed runs had little effect on the accuracy.

The statistical metric utilized in fault localization plays a crucial role in the effective-
ness and accuracy of the results. While Ochiai [1], the metric used for the evaluation
of this thesis, reported to be effective for fault localization [1, 2], often outperforming
other options, the work of Y. Qi et al. [19] proposed a new research direction: Viewing
the effectiveness of fault localization directly through automated program repair. They
found two critical observations: (1) fault localization techniques, which performed well
in prior studies, did not have good performance for automatically repairing faults. (2)
In contrast to other studies, Jaccard [2] seems to perform at least as well as other
techniques, with partially larger effects regarding improved effectiveness and accuracy.

3.3 Overfitting

When program repair relies on test suites as the primary criterion for generating patches,
there is a significant risk of producing overfitted patches—patches that satisfy the given
test cases but fail to address the underlying fault. Multiple evaluations [31,32] have
demonstrated that (using the setups of state-of-the-art techniques as of 2017) over half
of the generated patches were incorrect despite being treated as valid by the repair.

To mitigate the occurrence of overfitting, approaches such as Opad [32] have been
developed. Opad generates additional test cases specifically to assess whether a patch
overfits the fault. These additional test cases are only applied once a candidate patch
has been identified as valid by the repair. To filter out overfitted patches effectively,
Opad implemented a custom metric named O-measure. The larger test suite in this
context serves as an additional validation layer to eliminate overfitted patches, rather
than directly influencing the genetic evolution process during repair. With Opad in
place, J. Yang et al. [32] reported successfully filtering out 75.2% of overfitted patches
in their evaluation.

3.4 Inconsistent Causes

Despite numerous studies investigating the effects of larger test suites and overfitted
patches, it is not easy to pinpoint the exact cause of these observations. The reason
often lies in the large range of possible parameters, which led to less comparable results
among studies. For example, fault localization studies may provide contrasting results
due to differences in possible metrics, techniques, amount of test runs, program sizes,
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and choice of subjects. Moreover, techniques that appear non-deterministic like genetic
search-based repairs are very vulnerable to the randomness of mutations and often
report varying results for slight changes in parameters. In this thesis, the effects on
fault localization and validation are evaluated separately to gain better insights into
the exact causes, which lead to either positive or negative trends with additional test
cases.

4 Improving Repair with Additional Tests

This section explains the integration of additional test cases into the repair process,
detailing the implementation and selected parameters. Subsection 4.1 provides a
motivating example, helping to understand how subjects and inputs are structured,
while also presenting different methods for input generation. The repair process is
described in Subsection 4.2, highlighting the components that depend on the test suite
as well as other important parameters. Finally, Subsection 4.3 explores how suggestions
from fault localization can be modified to incorporate larger test suites more effectively
into the repair process.

4.1 Generation of Test Cases

In general, search-based repair techniques require failing and passing test cases. To
illustrate how test cases are generated, we present a motivating example about the
infamous subject middle_2. The task of middle_2 is to return the middle value of
three integers provided as parameter inputs. An easy way to solve this is by sorting the
three integers and returning the value of the second one. However, the implementation
of middle_2 in Tests4Py [24] intentionally includes a defect. As presented in the
evaluation results, FixKit [25] can repair the fault of middle_2, simply by utilizing
test cases, the source code of the program and an oracle, which is necessary to declare
inputs as failing or passing. Figure 2 depicts a comparison of the source code of
middle_2 with one being the faulty and the other one being the patched version. To
easily recognize faulty inputs of middle_2, one can check if the following statement
holds true for inputs of the form (x, y, z):

y < x < z (1)

FixKit [25] handles these test cases by loading the inputs as paths of individual
text files, with each argument being separated by spaces. This means failing in-
puts such as 1 0 2 need to be written into a text file which can be saved as
"tmp/middle_2/failing_test_0" in a temporary directory. While not essential for
the repair, many modern input generation methods need additional information such
as grammars to produce them effectively. The following descriptions outline the
importance of grammars and oracles for generating inputs:
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1 def middle(x, y, z):
2 if y < z:
3 if x < y:
4 return y
5 elif x < z:
6 return y
7 else:
8 if x > y:
9 return y

10 elif x > z:
11 return x
12 return z

(a) Faulty implementation at line 6.

1 def middle(x, y, z):
2 if y < z:
3 if x < y:
4 return y
5 elif x < z:
6 return x
7 else:
8 if x > y:
9 return y

10 elif x > z:
11 return x
12 return z

(b) Patched version.

Figure 2: Python source code of middle_2.

Grammar. A simple way of gathering test cases is fuzzing, which was introduced in
1990 [17]. Fuzzing is the act of generating inputs at random until they fail a
program, thus a faulty input is found. General fuzzing can often be enhanced
by incorporating grammars, which directly define the structure of valid inputs.
For example, instead of fuzzing random strings for middle_2 and hoping that it
generates three integers and two spaces in between purely by chance, a grammar
can specify that the inputs are exactly structured how they should be syntactically.
Therefore, only valid inputs (not necessarily passing) will be fuzzed. Figure 3
shows the code used to define the grammar of middle_2.

Oracle. Additionally, a failing condition must be specified to let the fuzzer know what
exactly counts as a failing input. In the case of middle_2, the oracle asserts
that the returned value is the second value of the sorted arguments. Once this
assertion fails, the input is classified as failing and otherwise as passing.

1 middle_grammar: Grammar = {
2 "<start >": ["<x> <y> <z>"],
3 "<x>": ["<integer >"],
4 "<y>": ["<integer >"],
5 "<z>": ["<integer >"],
6 "<integer >": ["<digit >", "<digit ><integer >"],
7 "<digit >": [str(num) for num in range(1, 10)],
8 }

Figure 3: Python source code of the grammar of middle_2.
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4.1.1 Subjects

All subjects evaluated in this thesis are provided by Tests4Py [24]. The testing
framework presents subjects by their name and bug_id. While the name indicates
the program in general, the bug_id refers to a certain variation of the program in
which only one bug is present. Thus, middle_1 and middle_2 are slightly different
implementations of the same program and need alternate fixes.

This paper either refers to a subject by stating its bug_id directly behind the name
of the subject, the way it is for middle_2 for example, or by stating the subject name
on its own if the bug_id is not relevant or if there is only one bug for a subject. As
for the generation of test cases, subjects like middle_1 and middle_2 require the same
inputs and therefore do not need to be differentiated in this context.

4.1.2 Generation Methods

There are many different ways of generating inputs. The next paragraphs highlight
which methods were considered for the evaluation and how they differ.

Tests4Py. Tests4Py [24] itself implements 10 predefined failing and passing inputs
for each subject, providing a baseline of test cases. These inputs can be found in the
"tmp/{subject}" directory for each subject, respectively.

Grammar-based Fuzzer. Alternatively, a grammar-based fuzzer can generate addi-
tional test cases. Using a corresponding grammar and oracle, which are implemented
in debugging-benchmark [6], a wrapper for Tests4py [24], the fuzzer can generate
indefinitely many test cases given enough time. Table 1 provides an overview of how
many iterations it took the fuzzer to generate at least 250 failing and 250 passing
inputs. Moreover, the time needed to generate those test cases is fairly low, moving
in the territory of seconds for toy subjects such as middle_2. The results in the
table and generated test cases for the evaluation were produced by the GrammarFuzzer
from ISLa [27]. The recorded times were measured on a local machine during early
experiments.

Avicenna. Avicenna [7] is a novel approach from 2023, which was considered as a
method for test case generation due to it having prior connections to Tests4Py [24],
showing the ability to generate bug diagnoses for the subjects. While bug diagnoses
are primarily a method to explain bugs in a semantic way, which can be understood by
humans as well as computers, this very property also allows it to effectively find failing
inputs. Using specified grammars, initial inputs and oracles, which are all available
from debugging-benchmark [6] and Tests4Py [24], Avicenna could be employed to
generate additional test cases. It utilizes a feedback loop to refine a hypothesis by
determining logical characteristics over input elements, which are extracted from the
grammar. For example, Avicenna can conclude that for every input of middle, it
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Table 1: The number of generated test cases through a grammar-based fuzzer in relation
to the total number of iterations and measured time.

Subject #Failing inputs #Passing inputs Iterations Time

calculator 250 250 2513 < 3 s
middle 250 250 1638 < 3 s
markup 250 250 8348 ∼ 30 s
expression 250 250 1081 < 3 s
pysnooper_2 250 250 2151 ∼ 3m
pysnooper_3 250 250 1047 ∼ 2m

must follow the equation shown beforehand in 1. Tools like the ISLaSolver [27] can
append on the functionality and solve the produced diagnosis from Avicenna.

However, the generated inputs fall short of using a grammar-based fuzzer, because
the faults implemented in Tests4Py are reasonable to find at random given the structure
of the grammar. Due to the overhead of generating inputs through a diagnosis, the
ISLaSolver takes significantly longer, often requiring up to 30 minutes per subject to
generate the same amount of test cases as shown in Figure 1. Moreover, some subjects
cannot reliably generate failing inputs in high quantities. As for passing inputs, they
can be generated by negating the formula of the diagnosis. This also did not work
reliably for most subjects. Due to the missing reliability and high dependency on the
ISLaSolver, this evaluation did not generate test cases through Avicenna. Despite
falling short, we still want to highlight some benefits:

Avicenna uses initial inputs to build a hypothesis over multiple iterations, meaning
the resulting inputs are only related to one bug. The ability to distinguish between
multiple bugs might be beneficial for automated program repair, allowing the genetic
refinement to focus on the same objective. However, we deemed this advantage
unnecessary for this thesis, since the subjects from Tests4Py aim to implement only
one bug at a time. Nonetheless, if better methods are introduced to solve the diagnoses
provided by Avicenna, it might be able to generate test cases quicker and more
reliably in the future.

4.2 Repair

The repair approaches implemented in FixKit [25] generally follow the common generate-
and-validate strategy, while leveraging the power of genetic programming to iteratively
improve patch candidates. They incorporate a fitness function, which evaluates the
quality of a patch and decides which candidates stay in the current population for
the next iteration. Figure 4 presents the repair process in detail, demonstrating how
Genprog [29] operates and behaves within FixKit.

11



Figure 4: Structure of FixKit’s [25] repair process.

4.2.1 Repair Process

FixKit’s [25] repair process consists of three distinct parts: fault localization, patch
generation and patch validation. While localizing the fault is only part of the preparation,
thus being executed once, the generation and validation form a repair loop. One creates
new patch candidates through crossovers and mutations, while the other one validates
these new candidates by assigning fitness scores, which are relevant for selecting patch
candidates in the next generation.

Fault Localization. Before localizing the fault, FixKit [25] prepares the repair process
by parsing the source files of the faulty program through a statement finder, which
maps code lines to an identifier number. This is later used to store the output of fault
localization in pairs of identifiers and weights (called suggestions).

Fault localization techniques identify code lines that are likely contributors to a
program’s fault. These methods typically rely on statistical metrics derived from a
given test suite to rank code lines by their level of suspiciousness. Code lines that
are executed more frequently during failing tests and less frequently during passing
tests are inferred to have a higher likelihood of causing the fault. After ranking the
suspiciousness of code lines, the most likely faulty ones are mutated or swapped. This
introduces a new patch candidate, which causes an alternative behavior of the program.
To guide the candidates in a beneficial direction, Genprog [29] only considers other
code lines present in the program as valid alternatives, this follows the competent
programmer’s hypothesis [8]. The idea behind it is that bugs in real-world programs
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only deviate slightly from the intended code and therefore can be resolved by simple
mutations. This greatly reduces the search space required for finding an appropriate
patch candidate which fixes the fault. However, this behavior also limits the ability to
repair faults in smaller programs or in those with unique, non-repetitive code lines.

FixKit [25] employs the statistical fault localization workbench SFLKit [26] to find
the location of faulty code lines with Ochiai [1] as the statistical metric because studies
observed it to be very effective among other metrics [1,2]. Commonly used alternatives
for the metric are Tarantula [10] or Jaccard [1].

Generation of Patches. After localizing the fault, the repair process fills the pop-
ulation by cloning an initial candidate, which has no mutations and represents the
original program. How many candidates are generated depends on the parameter for
the population size. The actual number of candidates grows and shrinks during the
repair process based on the following steps, which are applied to the entire population
every iteration:

Viability. At the beginning of each new generation, all candidates with a fitness score
of 0 are removed from the population, ensuring only useful candidates remain.
The removed patches usually contain invalid program behavior.

Selection. As the next step, half of the defined population size is selected from the
current population, with the fitness score as the probability of remaining in it.
A higher fitness score results in a higher likelihood of staying in the population
for the next generation but is not guaranteed for candidates with fitness scores
below 1.

Crossover. The selected population is shuffled and ordered into pairs. From each pair
of candidates, the corresponding mutations are appended crosswise and mutually,
resulting in two new child candidates, doubling the population in total.

Mutation. Lastly, for each candidate, each code line receives a chance to be mutated
based on the weight of the suggestion associated with that code line. For example,
a mutation that is represented by Replace(6, 10) has the effect of replacing the
code line identified as 6 with the one identified as 10. If this specific mutation is
applied to middle_1, it repairs the fault. The way these mutations are applied
by chance plays a crucial role in repairing the program, therefore this behavior
was evaluated and modified, as discussed in Subsection 4.3.

Validation of Patches. At the end of each iteration, the fitness score of each candidate
is updated by evaluating it with the specified failing and passing test cases for validation.
FixKit [25] implements a fitness engine, which automatically employs Tests4Py [24]
to evaluate all candidates in parallel and calculate the fitness scores, which are then
assigned to each candidate.
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Finalization. At the end of the repair process itself, be it reaching the maximum
number of iterations or finding a valid candidate, the repair is finalized. Delta debugging
techniques help to remove redundant mutations, which results in more qualitative
patches. However, this should not change the success rate in any way.

4.2.2 Approaches and Parameters

Most parameters were selected to closely align with the original implementation of
Genprog [29] in FixKit [25], including a recommended population size of 40 and
the use of Ochiai [1] as the statistical metric for fault localization. However, early
evaluations revealed random and unpredictable results, which were tracked down to be
caused by the way fault localization suggestions are utilized. By modifying the use and
general mutation probability, better results were noticed. This is discussed in detail in
Subsection 4.3.

4.3 Suggestions

During the initial evaluation, an unexpected pattern in the actual repair success rate
was observed. Specifically, an increase in the number of test cases often led to more
unstable repairs than the baseline and even a decline in effectiveness for larger test suites
in some instances. This issue was primarily traced to the way fault localization assigns
suspiciousness scores and incorporates them into the patch generation process. In
FixKit’s [25] base implementation, each line of code has a probability of being mutated
based on its assigned weight by the suggestion (and a general mutation chance). This
weight corresponds to the normalized suspiciousness score calculated using the following
metric:

Ochiai(fo, f, po) =
fo√

f · (fo + po)
(2)

The Ochiai [1] metric utilizes fo and po to represent the number of observed failing
and passing test cases, respectively, while f denotes the total number of failing test
cases. This metric is computed for each code line based on the test cases that traverse
that code line. Ochiai is a widely adopted metric in fault localization [1, 2]—however,
it comes with one flaw: It generally performs better when more total passing test cases
are present than failing ones. The effects can be seen with an example.

Table 2 presents the top five suggestions from middle_1’s fault localization using
varying numbers of test cases. As expected, increasing the number of test cases improves
the precision of the suggestions. Notably, the configuration with 50 failing and 50
passing tests correctly identifies code line 6 as the primary source of the fault. However,
the configuration with 1 failing and 10 passing tests appears more effective for the
repair process. This effectiveness arises because the lower weights assigned to the third
suggestion and onward make these code lines less likely to be mutated, reducing the

14



occurrence of ineffective mutations. Given that there can be dozens of such suggestions,
those differences in mutation probabilities (e.g. 0.3 vs. 0.7) for non-faulty code lines
can significantly impact the repair outcome. This difference originates from the 1:10
ratio of failing to passing test cases, as opposed to the 1:1 ratio.

Table 2: Top five suggestions from middle_1’s fault localization for test cases (failing,
passing). The first number is the identifier, the second is its associated weight.

(1, 1) (1, 10) (10, 10) (50, 50)

5: 1.000 5: 1.000 6: 1.000 6: 1.000
6: 1.000 6: 1.000 5: 0.956 5: 0.901
1: 0.707 3: 0.500 3: 0.877 3: 0.844
2: 0.707 1: 0.302 1: 0.707 1: 0.721
3: 0.707 2: 0.302 2: 0.707 2: 0.721

... ... ...

Intuition and Proof. This paragraph provides intuition on why the ratio between
failing and passing test cases influences the Ochiai [1] metric and demonstrates
a conceptual proof of the observed effect. When additional passing test cases are
introduced without adding failing ones, po increases, while f and fo remain constant.
Because po appears in the denominator of the metric, its increase causes the value of
the metric to decrease for code lines affected by these passing test cases. In FixKit [25],
the metric is then normalized, so this decrease widens the gap between the faulty code
line (which is less affected by passing tests) and other code lines, thereby improving
fault localization for the repair when more passing tests are present. This behavior
depends on the ratio of failing to passing tests rather than their absolute counts.

For the proof, assume there are f failing test cases and p passing test cases, such
that p = k · f , where k represents the ratio of passing to failing tests. For any specific
code line, let the proportion of failing test cases traversing it be i, and the proportion
of passing test cases traversing it be j. This implies fo = i · f and po = j · p = j · k · f .
Substituting these into the Ochiai metric yields:

Metric =
fo√

f · (fo + po)
=

i · f√
f · (i · f + j · k · f)

,

which can be simplified to:

Metric =
i · f√

f 2 · (i+ j · k)
=

i · f
f ·

√
i+ j · k

=
i√

i+ j · k
.
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This result shows that the metric depends only on the constants i, j, and k, confirming
that the ratio of passing to failing test cases (k) plays an important role in the metric’s
behavior. Due to the way, FixKit utilizes the weights as the probability to apply
a mutation for that specific code line, it often disables the repair to benefit from
additional test cases. In practical software scenarios, the ratio of passing to failing
test cases is not typically something that can be easily adjusted. Moreover, as shown
in Table 2, increasing the number of failing test cases can improve the precision of
repair, isolating the exact location of the fault. FixKit’s default implementation of
incorporating the suspiciousness score into the repair will often lead to a dependency
on the ratio. To mitigate this effect and observe the behavior in the evaluation results,
we included modifiers in FixKit, which alter the suggestions post hoc in different ways.

4.3.1 Modifiers

The suggestions generated by fault localization are stored in a list of weighted identifiers,
where each identifier is associated with a specific code line and a weight, representing
the normalized suspiciousness score on a scale from 0 to 1. The list is sorted first in
descending order of weight and then in ascending order of identifier number, ensuring
reproducible outcomes. Modifiers are applied directly before the repair process accesses
this list, altering two aspects: which suggestions are selected from the list and how the
weight influences the mutation probability, if at all. Table 3 provides an overview of
how each modifier impacts the suggestions and their corresponding mutation chance
based on the weight.

Table 3: Selected suggestions and their corresponding mutation chance per modifier
based on the weight.

Weights Default TopRank TopEqualRank WeightedTopRank Sigmoid

1.00 1.00 1.00 1.00 0.50 1.0000
1.00 1.00 1.00 1.00 0.50 1.0000
0.90 0.90 1.00 1.00 1.00 0.9997
0.80 0.80 – 1.00 1.00 0.5000
0.70 0.70 – – – 0.0045

Default. The DefaultModifier() does not modify the behavior of the original imple-
mentation of FixKit [25]. It returns the same list of suggestions and uses the
weight as the mutation chance.

TopRank. The TopRankModifier(k=3, threshold=0) returns only the first k sugges-
tions, which are the ones with the highest weights. The threshold parameter
removes all suggestions with a weight at or below the specified value. The mu-
tation chances for the selected locations are all set to 1, rather than using the
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weight. In theory, the TopRankModifier() should be more effective as it focuses
solely on the highest-weighted suggestions, but it can be misleading. For example,
multiple suggestions may share the same weight, often due to being traversed by
the same test cases. If the first six suggestions all have a weight of 1, this modifier
will only use the first three of them (with k=3), even though the others are also
identified as faulty. To address this issue, some variations were implemented.

TopEqualRank. The TopEqualRankModifier(k=3, threshold=0) works similarly to
the previous modifier, but returns all suggestions under the top k weights. This
approach should better reflect the localized fault. However, many unnecessary
suggestions may be included, if they share the same weight. It performs well
when the suggestions are diverse, which is often the case when additional test
cases are used.

WeightedTopRank. The WeightedTopRankModifier(k=3, threshold=0) returns the
same suggestions as the previous modifier but adjusts the mutation chance based
on the number of suggestions with the same weight. If n suggestions have the
same weight, the mutation chance for each of these suggestions is set to 1/n. The
idea behind this is that suggestions with the same weight might originate from
the same general location (e.g., one code block) because of the same number of
traversed failing and passing tests going into the metric. With that modifier, this
general location would receive the same total mutation chance as other parts,
but divided on all code lines within it.

Sigmoid. The SigmoidModifier(steepness=10, m=0.8) uses a modified sigmoid-like
function, which allows control over the steepness of the curve and the midpoint
m at which the value of the function is always 0.5. This function pushes weights
above the midpoint towards 1 and weights below it towards 0. Using the weights
as mutation chances, similar to the DefaultModifier(), the sigmoid function may
effectively isolate faulty code lines. However, due to the inconsistencies described
earlier, especially when different test case ratios are used, this modifier cannot
be generalized without determining the optimal midpoint for each configuration.
The implemented function is as follows, where x is the weight as the input, a is
the steepness and m is the midpoint:

f(x) =

(
x
m

)a(
x
m

)a
+
(

1−x
1−m

)a
4.3.2 Mutation Chance

Due to the modifiers reducing the number of suggestions relevant to the repair process,
the number of mutations also decreases equivalently. To mitigate this effect, the general
mutation chance w_mut was increased from 0.06 to 0.2, which after some experimentation
seemed like an effective value for most toy subjects. The ideal choice of the mutation
chance depends on how many mutations a certain subject requires. For many, a single
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mutation is often enough, for example, middle_1 can be fixed through the mutation
Replace(6,10). Using higher mutation chances can accelerate the process of finding
the right mutation, but very high values lead to long combinations of mutations, which
are rarely able to fix the program.

5 Evaluation

To evaluate the quality of produced patches, an independent test suite is employed,
separate from the one used during the repair process. Using the system tests engine
from FixKit [25], which is also utilized during validation and based on Tests4Py’s [24]
testing capabilities, the final fitness score is computed. Moreover, a Tests4Py report is
generated, which maps all test cases to an enumeration data type called TestResult,
which classifies each test case as either PASSING, FAILING, or UNDEFINED—the latter
only occurs when the oracle fails to categorize a test case. Each patch candidate stores
an individual instance of this report, which allows us to analyze the quality of a patch
with a custom metric.

5.1 Metric

Rather than relying solely on the fitness score, a custom evaluation metric was im-
plemented that resembles the structure and functionality of a confusion matrix. It
compares the outcome of test cases to the classification of the original program:

1. STILL PASSING: The original passing test cases are still passing the patch.

2. NOW FAILING: The original passing test cases are now failing the patch.

3. NOW PASSING: The original failing test cases are now passing the patch.

4. STILL FAILING: The original failing test cases are still failing the patch.

This metric allows us to calculate more scores, such as the precision, recall and F1
score of patches.

precision =
NOW PASSING

NOW PASSING+ NOW FAILING

The precision expresses the advantageous changes in the patch’s behavior compared to
the original program, meaning a value of 1 indicates that only the faulty behavior was
resolved without altering the functionality which was originally passing. In contrast, a
value of 0 indicates no useful changes at all, meaning the bug still persists.

recall =
NOW PASSING

NOW PASSING+ STILL FAILING

The recall indicates how effective the patch is in repairing the fault by assessing how
many test cases are now passing, which were originally failing. A value of 0 also relates
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to no useful changes, while a value of 1 implies that the original fault was completely
resolved. However, it may include incorrect behavior in the once-correct functionality
of the program.

The F1 score represents the harmonic mean of precision and recall, both of which
are essential in identifying effective repairs. In general, only patches that achieve an
optimal F1 score of 1 are considered suitable for production, as they indicate a complete
repair. While partial repairs are theoretically possible, they rarely result in practically
useful fixes, due to introducing unwanted behavior or ignoring the underlying cause
of the fault. Notably, it is important to acknowledge that likely no metric can fully
determine the quality of a patch, as all evaluations are inherently constrained by the
incomplete nature of test suites.

5.2 Setup

Reproducibility. This thesis valued the reproducibility of outcomes regarding specific
repair configurations. To achieve this objective, several adjustments were implemented.
The following aspects played a crucial role in that:

Order of Suggestions. During the implementation, it became evident that different
results appeared despite using the same seed for Python’s randomization, which
should ideally ensure deterministic behavior. A look into the repair process using
a debugger revealed that the primary source of this inconsistency lay in how
SFLKit [26] returned code lines associated with suspiciousness values (suggestions).
Although the suspiciousness values themselves were correctly assigned, the order
of suggestions with the same weight was inconsistent. This inconsistency affected
FixKit [25], which iterates over code lines and applies mutations by chance—
such that the same index of the suggestions received the same mutation. For
example, the fifth suggestion might induce a mutation for the specific code line
the suggestion identifies. If the fourth and fifth suggestions have the same weight
and the order is inconsistent, their position in the list of suggestions might switch.
Thus, the mutation is applied for the fifth suggestion which now corresponds to
the fourth suggestion from before, affecting a different code line. To address this
issue, the suggestions were re-sorted to ensure consistency: first by descending
weight and then, in cases of identical weights, by ascending identifier numbers.
While this adjustment might lead to a bias toward lower identifier numbers (often
corresponding to code lines earlier in a file), it should not affect the current
evaluation because it treats the suggestions with the same weight equally.

Order of Files. While the order of suggestions varied across all tested systems, the way
how FixKit [25] used the files to create the identifiers, linking specific code lines
to suggestions, was environment-dependent. Every experiment that ran on a local
machine using Windows Subsystem for Linux (WSL) reported consistent results.
However, inconsistencies arose on the Gruenau servers, where the evaluation was
conducted, due to differences in which files were read by the statement finder

19



of FixKit. To mitigate this, the statement finder now sorts the files first by
lexicographical order.

Tests4Py Evaluation. Finally, the Gruenau server environment also introduced some
minor variations in the results, regarding the validation process of the repair. For
instance, Tests4Py [24] sometimes evaluated a patch candidate with the mutation
Delete(16) to have a fitness of 0.09 and other times 0.06. This inconsistency
could not be replicated on the local machine and likely indicated an issue within
Tests4Py itself or the way the fitness function is created. Although this only
happens for a small fraction of candidates, the earlier it deviates, the more
different the results are going to be.

Configurations. Table 4 presents an overview of the selected parameters, which
includes four variants, two test suite sizes for the baseline, and four test suite sizes
for the other variants. This configuration was executed five times, with different
seeds used for both the repair process and the generation of the test suite. The test
cases for the evaluation set were generated using a fixed seed (0) to ensure that the
results from different runs remained as comparable as possible. The baseline employs
the specified test suite sizes for both the fault localization and validation portions of
the repair process. The fault localization variant only uses the specified test suite
sizes for fault localization, otherwise employing the baseline test suite (1, 10) for
validation. Conversely, the validation variant always uses (1, 10) for fault localization
and incorporates the specified test suites in its validation. The complete variant does
not include any test cases from the baseline and uses the specified test suites throughout
the entire repair process (both for fault localization and validation).

Table 4: Configuration setup of different parameters with the total number of combi-
nations evaluated.

Variations Number Parameters

Repair approaches 1 Genprog
Variants 4 Baseline, fault localization, validation, complete

Bugs 8
calculator, middle_1, middle_2,
expression markup_1, markup_2,
pysnooper_2, pysnooper_3

Iterations 1 10
Baseline tests 2 Failing and passing : (1, 1), (1, 10)
Additional tests 4 Failing and passing : (5, 5), (10, 10), (30, 30), (50, 50)

Total runs 5 Seeds (repair): 1714, 3948, 5233, 7906, 9312
Seeds (tests): 959, 2655, 4916, 6114, 8452

Combinations 560 (112 per run, 14 per subject)
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As discussed in Section 4.3, the evaluation also examines how altering suggestions
could impact the repair effectiveness. The employed modifiers follow the structure
of the setup and each one runs with the same configuration as described in Table 4.
All configurations were executed with a maximum of 10 iterations and the current
generation was extracted whenever the repair process was stopped, indicating whether
a patch was found early.

6 Results

This section presents the evaluation results by addressing the following research ques-
tions for each subject:

RQ1. How do additional test cases improve different stages of the repair process?

RQ2. How do additional test cases affect the duration of the repair?

RQ3. Do the proposed modifiers described in Subsection 4.3.1 lead to improved repairs
for larger test suites compared to the default implementation?

Interpretation of Results. Given the limited sample size of five runs per subject,
the results lack statistical significance. However, trends in effectiveness can still be
observed. After examining the specific behavior of the repair process, these effects can
provide insights into repair effectiveness and overfitting based on the selected subjects,
modifiers and test suite sizes. The results for each subject are presented in a table,
with the F1 scores being the primary metric, which were calculated by an individual
evaluation set containing 50 failing and 50 passing test cases. Whenever a value in
parentheses (ranging from 1 to 10) precedes the F1 score, it indicates the generation at
which the repair process has stopped. The repair process of FixKit [25] automatically
stops upon identifying a valid repair (when the fitness is approximately 1) based on its
defined validation. If not stated otherwise, all results primarily present runs with the
TopEqualRankModifier(k=3, threshold=0) and a general mutation chance w_mut of
0.2.

Moreover, for the presentation of plots, either the actual success rate or the overfitting
rate is displayed. The actual success rate represents the proportion of runs for a given
configuration that resulted in an actual fix. In the case of middle, the evaluation test
suite is always sufficient to definitively determine whether the fault has been resolved—
this was manually verified for all patches that achieved an F1 score of 1. The perceived
or tool-reported success rate reflects the proportion of runs that were stopped due to the
repair process thinking it found a valid patch, this directly correlates to the evaluation
capabilities of the validation test suite. The overfitting rate is calculated by subtracting
the perceived success rate from the actual success rate for each configuration, thus
presenting the proportion of runs that were mistakenly identified as valid by the repair
process but ultimately failed to fix the fault.
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From all eight bugs, four groups with two bugs each have emerged that show different
behaviors: (6.1) Two bugs (middle_1 and middle_2) were fixed by FixKit, (7.1) for two
bugs (markup_1 and markup_2) no appropriate repair was found due to an incorrect
implementation of the oracle, (7.2) two bugs (expression and pysnooper_3) have
found a patch that reached a maximum fitness but is incorrect due to an insufficient
oracle, and lastly (7.3) two bugs (pysnooper_2 and calculator) are not fixable by
typical search-based repair approaches. The following subsections present the results of
the subjects that were fixed and assess the research questions, while Section 7 discusses
why six bugs were not fixed.

6.1 (RQ1) Repair Improvements

Repair Effectiveness. The repair process for middle_1 successfully found valid
patches and effectively resolved the fault in the program. However, as shown in
Table 5, only seed 1714 indicates an increase in the actual success rate with additional
tests in fault localization compared to the baseline. For all other seeds, outliers can be
observed: In some cases, the baseline performs better (e.g., seed 5233), while in others,
the fault localization effectiveness decreases with more tests (e.g., seed 9312). It is
likely due to the small impact of improved fault localization being outweighed by the
inherent randomness of the repair process. As presented later, middle_2 exhibits the
same effects as middle_1, thus to answer RQ1 partially, one of the key observations is:

Additional test cases did not show a clear improvement
in repair effectiveness when applied to fault localization.

Using specific modifiers can reduce this amount of variety caused by the inherent
randomness, but does not eliminate it. When comparing these results to those from
the original implementation of FixKit [25], using the DefaultModifier() and a lower
mutation chance (w_mut=0.06), the randomness has an even higher impact, as shown
in Table 6. Valid repairs are less frequent, and for each seed that tries to enhance
fault localization, at least one test case configuration fails to find any useful patch
(indicated by the greyed-out 0.00 in the table). The baseline configuration (1, 10)
and the validation portion, which employs (1, 10) as the test cases for localizing the
fault, outperform other configurations. This difference is likely due to the ratio of test
cases, as previously discussed in Section 4.3, which highlights a fundamental flaw of
the default implementation when scaling up test suites.

When examining the actual success rates (see Figure 5), it becomes evident that the
DefaultModifier() works better with the 1:10 ratio for fault localization (see baseline
and validation), while the TopEqualRankModifier() outperforms it in the complete
portion. However, the effectiveness in the fault localization portion appears similar
among the two modifiers given the same mutation chance. This is likely the case,
because the ineffective validation often led the repair to stop early, thus hiding the
actual performance difference for the two modifiers.
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Table 5: Results of middle_1 for TopEqualRankModifier() and w_mut=0.2.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.71 (8) 0.91 0.71 (9) 0.91 0.00
(1, 10) 0.71 0.71 (6) 1.00 0.81 (8) 0.91

Localization

(5, 5) (2) 1.00 0.71 0.81 (2) 0.91 0.00
(10, 10) (2) 1.00 0.71 (3) 0.91 (2) 0.91 (8) 1.00
(30, 30) (2) 1.00 (9) 0.91 0.81 (2) 0.91 (8) 0.91
(50, 50) (2) 1.00 (9) 0.91 0.81 (2) 0.91 (5) 0.91

Validation

(5, 5) 0.81 0.71 0.81 0.78 0.00
(10, 10) 0.81 0.71 0.81 0.91 0.00
(30, 30) 0.91 0.71 0.81 0.81 0.00
(50, 50) 0.00 0.71 0.81 0.81 0.00

Complete

(5, 5) (2) 1.00 0.71 0.91 0.91 0.00
(10, 10) (2) 1.00 0.71 (4) 1.00 0.91 (10) 1.00
(30, 30) (2) 1.00 (3) 1.00 (10) 1.00 0.91 0.91
(50, 50) (6) 1.00 0.81 (4) 1.00 0.91 0.00

Table 6: Results of middle_1 for DefaultModifier() and w_mut=0.06.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.81 (1) 0.91 (6) 0.91 0.71 0.81
(1, 10) (3) 0.91 (6) 1.00 (2) 0.91 (3) 0.91 (7) 0.91

Localization

(5, 5) (6) 0.91 0.00 0.87 (5) 0.91 0.71
(10, 10) (7) 0.91 0.00 0.00 (1) 0.91 0.00
(30, 30) 0.00 0.00 0.00 (7) 0.91 0.00
(50, 50) 0.00 (9) 0.91 (8) 0.91 0.00 (6) 1.00

Validation

(5, 5) 0.91 (6) 1.00 0.91 0.91 (7) 0.91
(10, 10) 0.91 (8) 1.00 (8) 1.00 0.91 0.91
(30, 30) 0.91 (6) 1.00 0.91 0.81 0.91
(50, 50) 0.91 (6) 1.00 0.91 0.91 0.91

Complete

(5, 5) 0.91 0.71 (6) 1.00 0.81 0.71
(10, 10) 0.71 0.71 0.00 0.91 0.81
(30, 30) 0.81 0.00 0.00 0.00 0.81
(50, 50) 0.00 (8) 1.00 0.91 0.91 0.00
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Figure 5: Actual success rate per configuration of middle_1.

Overfitting. Table 5 presents a clear reduction in overfitting when comparing the
validation and complete portions with the fault localization and baseline portions. With
better validation, each time the repair process had stopped (indicated by a displayed
generation), the F1 score consistently reached 1, signifying that a valid patch was
found. Figure 6 illustrates the overfitting rates for different modifiers and confirms
that using additional test cases during validation reduces the occurrence of overfitted
patches. The test suite size of 10 failing and 10 passing test cases effectively mitigates
overfitting for middle_1—using larger test suites only appears to make a marginal
difference. Following the observations of several studies [23, 31, 32] and to answer a
part of RQ1, we confirm that:

Additional test cases can effectively eliminate
overfitted patches when used during validation.

Note that the concept of overfitted patches can vary in this context. Since the repair
process stops upon identifying an appropriate solution, it may not fully capture the true
effectiveness. In principle, the repair could continue running after identifying a correct
patch during validation, potentially generating an actual fix by chance later on. The
issue lies in the inability of the repair process to accurately assess the quality of a patch
without additional test cases. Tools such as Opad [32] incorporate additional test cases
to verify whether a certain patch is valid whenever the repair process returns a patch
that reaches a maximum fitness score. If this patch fails any of the additional tests,
the repair process continues until the patch satisfies the metric Opad uses. This acts
like an additional validation layer and does not affect the genetic portion of the repair
itself. While this accelerates the repair process, it is not able to refine the internal
fitness score. More test cases could lead to a more precise validation, thus enhancing
the genetic portion of the repair.
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Figure 6: Overfitting rate per configuration of middle_1.

In our evaluation, we found that the fitness function does not play a major role in
contributing to the effectiveness of the repair. For instance, there are occurrences where
the baseline performs better than the validation using larger test suites (e.g. seed 5233).
Figure 5 also shows a stable success rate in the validation portion, suggesting that the
change in fitness through increased precision is too small to have a significant impact
on this subject. A larger program and more iterations are likely required until the
genetic refinement is noticeable. A study [13] has also shown that exhaustive repairs,
which iterate through a selection of mutations and test each one, can be more effective
for many subjects, compared to genetic approaches.

Middle 2. Conversely, middle_2 could be repaired like middle_1 and reports even
higher success rates, as presented in Table 7 and Figure 7. This is due to middle_2

Figure 7: Actual success rate per configuration of middle_2.
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Table 7: Results of middle_2 for TopEqualRankModifier() and w_mut=0.2.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.71 (2) 0.91 (1) 1.00 (3) 1.00 (9) 0.91
(1, 10) (3) 0.91 (2) 1.00 (1) 1.00 (4) 0.91 (5) 1.00

Localization

(5, 5) (4) 1.00 (2) 1.00 (1) 1.00 (6) 1.00 0.81
(10, 10) (4) 1.00 (2) 1.00 (1) 1.00 0.00 (1) 0.91
(30, 30) (4) 1.00 (6) 0.91 (1) 1.00 (7) 1.00 (1) 0.91
(50, 50) (6) 0.91 (3) 0.91 (1) 1.00 (7) 0.91 (1) 0.91

Validation

(5, 5) (6) 1.00 (5) 0.91 (1) 1.00 0.71 (7) 0.91
(10, 10) 0.91 (2) 1.00 (1) 1.00 0.71 0.71
(30, 30) (7) 1.00 (4) 1.00 (1) 1.00 0.81 0.81
(50, 50) 0.91 0.91 (4) 1.00 (10) 1.00 (10) 1.00

Complete

(5, 5) (4) 1.00 (2) 1.00 (2) 1.00 0.81 (7) 0.91
(10, 10) 0.81 (2) 1.00 (1) 1.00 0.81 (2) 1.00
(30, 30) (10) 1.00 (5) 1.00 (1) 1.00 0.81 (2) 1.00
(50, 50) (7) 1.00 (4) 1.00 (1) 1.00 0.81 (5) 1.00

having a smaller search space, as it does not include a specific cli.py-class that is
needed for middle_1. Nonetheless, middle_2 experiences the same effects on repair
effectiveness as described before, with no clear indication of improving fault localization
regarding repair success rates. As for overfitted patches, they are reduced with additional
tests during validation as best seen in Figure 8.

Figure 8: Overfitting rate per configuration of middle_2.

26



One notable difference is that the DefaultModifier with w_mut=0.2 performed
prominently better than other modifiers in the validation portion, having the least
amount of overfitted test cases. In principle, the choice of modifier should not directly
affect the validation process but can influence which mutations are found first. If the
correct mutations to fix the fault are applied first, the presence of overfitted patches
will decrease naturally. Most overfitted patches happen since the repair looks for the
first best possible solution and cannot differentiate the quality between multiple valid
patches without additional tests.

Other Subjects. For completeness, Tables 9, 10, 11 and 12 are presented in the
appendix of this paper, demonstrating the results for the subjects that did not find
a valid fix due to incorrect or insufficient oracles, but still produced high scores in
the metric. It should be emphasized that these values do not accurately represent
the repairability of those subjects. As for calculator and pysnooper_2, not a single
configuration of test cases led to an F1 score over 0. Section 7 discusses the reasons
why these subjects failed.

6.2 (RQ2) Repair Time

Figure 9 and Table 8 present the average repair duration, measured from the initializa-
tion of FixKit [25] to the repair returning found patches after finalization, as well as
the average evaluation duration, which encompasses the final computation of fitness
scores and other metrics based on the evaluation set. The graphs depict the mean
duration across the five independent runs, all using the TopEqualRankModifier with
w_mut=0.2.

Note. All duration values were measured on the Gruenau servers, which at
times experienced high server loads during evaluation. Consequently, direct
comparisons across different subjects are not recommended, as the executions
may have occurred at different times, thus experiencing varying computational
conditions.

The repair duration appears to be strongly influenced by the number of test cases
used for validation, which is reasonable given that validation is performed in every
iteration, whereas fault localization is executed only once in the beginning. Moreover,
most subjects exhibit a stable or slight upward trend in repair duration as the number
of test cases for fault localization increases, except for expression, where the duration
consistently decreases as the test suite size increases in both the baseline and fault
localization portions. To answer RQ2, the gathered data led to the main observation
that:

Additional test cases for validation increase
the time required for repairing the fault.
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(a) middle_1. (b) middle_2.

(c) markup_1. (d) markup_2.

(e) expression. (f) calculator.

(g) pysnooper_2 (h) pysnooper_3

Figure 9: Average repair and evaluation time per configuration of each subject in
seconds.
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Table 8: Average repair and evaluation time in seconds.

Repair Time

Subjects B1-1 B1-10 F5-5 F10-10 F30-30 F50-50 V5-5 V10-10 V30-30 V50-50 C5-5 C10-10 C30-30 C50-50

middle_1 706.10 761.58 635.40 540.05 757.24 685.54 746.01 823.33 1204.96 1213.96 847.17 796.95 964.45 1367.26
middle_2 593.12 452.26 424.74 401.43 541.52 499.50 592.52 552.23 728.43 877.13 589.75 646.90 862.27 835.17
markup_1 461.34 580.72 499.32 431.20 484.77 491.17 541.18 598.37 750.11 945.16 564.26 672.81 801.75 906.22
markup_2 495.27 474.39 477.55 414.27 453.48 446.95 578.29 599.57 732.34 911.97 541.13 603.22 722.16 920.67
expression 662.40 583.56 926.32 910.29 618.79 591.79 566.51 855.84 897.46 1116.30 845.05 928.11 735.95 1096.16
calculator 722.39 824.91 827.75 804.66 821.62 756.98 887.07 1138.08 1900.51 3059.53 920.34 1118.76 2004.85 3108.56
pysnooper_2 339.87 337.96 323.90 323.05 333.98 360.49 314.57 337.00 386.34 456.58 274.29 308.59 369.03 448.62
pysnooper_3 242.34 145.63 145.88 176.14 237.64 235.12 153.74 159.56 190.41 179.45 168.58 193.24 342.71 391.13

Evaluation Time

Subjects B1-1 B1-10 F5-5 F10-10 F30-30 F50-50 V5-5 V10-10 V30-30 V50-50 C5-5 C10-10 C30-30 C50-50

middle_1 197.48 123.98 176.43 108.44 119.46 111.38 175.06 197.63 179.13 151.01 182.81 131.02 181.83 156.09
middle_2 108.24 73.37 78.80 88.12 93.54 79.98 91.67 86.68 115.52 112.33 94.78 123.04 149.55 93.84
markup_1 59.79 115.59 82.13 60.75 73.19 66.48 71.26 68.85 84.77 82.65 71.56 87.63 78.94 98.45
markup_2 79.93 72.33 76.36 60.58 61.99 66.14 84.92 91.31 83.68 87.22 69.74 79.22 75.26 89.22
expression 89.31 100.15 138.75 117.87 121.47 94.43 102.92 89.60 111.63 111.23 129.92 101.56 85.20 90.33
calculator 631.79 599.26 291.66 693.50 481.79 494.75 509.20 836.12 423.28 265.46 615.71 572.02 369.06 250.44
pysnooper_2 55.68 72.10 67.68 69.68 61.77 59.86 65.69 65.16 52.95 54.19 59.02 56.20 55.08 58.48
pysnooper_3 47.07 57.75 56.86 47.52 49.16 49.17 65.00 66.51 59.54 59.32 74.22 55.46 46.98 56.46

Another noticeable effect is that calculator required substantially more time for repair
compared to other subjects and was more affected by the number of validation test
cases. This trend was also observed in earlier evaluations and runs involving different
modifiers. One possible explanation is that calculator struggles to identify useful
patches, leading to an inefficient, aimless search process. However, pysnooper_2 follows
a similar repair process without ever finding useful mutations and still takes significantly
less time. Moreover, calculator also presents the highest average evaluation duration
among all subjects, suggesting that its validation process may be unoptimized despite
it being a relatively small program. On top of that, only calculator experiences
fluctuations in evaluation duration, whereas all other subjects maintain fairly consistent
and stable evaluation times.

Factoring in the repair effectiveness for middle_1 and middle_2, it appears that
10 failing and 10 passing tests could be the best compromise between repairing the
fault effectively and the required time. Increasing the number of validation test cases
for these subjects has minimal impact on the repair effectiveness, while leading to
notably longer repair durations. However, using more test cases in localizing the fault,
especially considering the use of modifiers, can effectively improve repair effectiveness
with only slightly slower repairs.

6.3 (RQ3) Effects of Modifiers

As shown in Subsection 6.1, the DefaultModifier is less effective for larger test suites
than other modifiers. Figures 10a and 10b display the effectiveness of all modifiers for
middle_1 and middle_2, respectively. As for the complete portion with high amounts
of test cases, the results of the DefaultModifier are falling short compared to the other
modifiers. However, as for the baseline and lower test suite sizes, the DefaultModifier
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(a) Success rate per configuration of middle_1.

(b) Success rate per configuration of middle_2.

(c) Total average of middle_1. (d) Total average of middle_2.

Figure 10: Comparison of the actual success rates of middle_1 and middle_2.
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functions as well as the other modifiers, if not better. When averaging the results of
all test suite configurations into a single average success rate, it holds up with other
modifiers (see Figures 10c and 10d) given the same mutation chance. Nevertheless,
decreasing the mutation chance to 0.06 with the DefaultModifier leads to considerably
lower success rates.

To accurately see how effective modifying the suggestions truly can be, the subjects
should have been evaluated on a range of mutation chances and with close analysis of
the locations, where mutations would be applied. Due to the large number of needed
parameters, this falls outside the scope of this thesis. We still want to highlight the
effectiveness in the form of the shown bar plots, although we did not look into the exact
functionality of how each modifier behaved in detail. In conclusion, modifiers were
introduced to resolve the degrading performance in larger test suites given the default
implementation. Modifying the suggestions accordingly has shown to be an effective
way for incorporating a large amount of test cases into the repair process. Despite not
finding a clear winner among the proposed modifiers, examining the results for large
amounts of test cases led to the observation (which answers RQ3 ) that:

The performance of the proposed modifiers scales up more ef-
fectively with larger test suites than the default implementation.

7 Discussion

Despite some bugs achieving maximum F1 scores, the repair did manage to resolve the
underlying issue, and for some subjects, it is simply impossible to repair the fault by
the methods employed in FixKit [25]. The following subsections discuss the challenges
encountered and why many bugs could not be successfully repaired.

7.1 Incorrect Oracle

The results (see Tables 9 and 10) indicate that neither of the bugs in markup led to
valid fixes, with only partial repairs reaching a maximum F1 score of 0.85. Upon
analyzing the generated patches alongside the corresponding test cases, which never
passed any patch, it became clear that the oracle of markup in Tests4Py [24] was
incorrectly implemented. The intended behavior of the subject markup is to remove
all tags from a simple HTML string. For instance, the input <a>example</a> should
return example. This is achieved by iterating through the characters of the input string
while maintaining a state to determine whether the current character is inside a tag. If
it is not, the character is appended to the output. Furthermore, the function accounts
for cases where a quote appears within a tag. When this occurs, any angle brackets
inside the quoted text are ignored (e.g., <a="<b>">c</a> becomes c).

Markup 1. markup_1 introduces a bug by incorrectly handling the precedence of
boolean operators. Instead of the correct (c == ’"’ or c == "’") and tag, markup_1
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implements it as c == ’"’ or c == "’" and tag, which falsely evaluates the and
operation first. This results in the function deleting all quotation marks, irrelevant if it
is inside or outside a tag, so <a>"b"</a> returns b instead of "b". Looking through the
patches, markup_1 never found a complete fix, which likely fails due to the limitations
of FixKit [25], which is not able to directly correct precedences in booleans without
finding a similar code line elsewhere. Nonetheless, markup_1 reaches a relatively high
F1 score of 0.85 by deleting the if-statement of the faulty condition and the subsequent
code line. This causes inputs to include quotation marks, thus passing many test cases,
but in rare cases, in which there is a quote inside a tag, still fail because the state is
not updated properly. For example, <a="<b>">c</a> returns "c, which is incorrect.

Markup 2. markup_2, on the other hand, contains a bug that incorrectly initializes
the tag state to be true in the beginning, ignoring all characters until a tag is closed.
For example, a<b>c returns only c instead of the correct ac. Despite not reaching
a maximum F1 score in any repair, markup_2 still finds a correct fix: It copies the
later-occurring code line tag=False and places it directly behind tag=True at the
beginning of the function, thereby resolving the bug. However, this does not reach
an F1 score of 1: It appears that the oracle compares the output of markup to an
expected value. While calculating the expected value, it removes all occurrences of ˆ
(circumflex), which does not align with the implementation of markup in general. We
assume this is simply a fault left in the oracle. Although this renders the results of the
evaluation useless, it also highlights one very important aspect: The oracle is just as
important as the test suite and can include bugs or be insufficient, as further discussed
in 7.2.

7.2 Insufficient Oracle

Besides an oracle being incorrectly implemented, it can also be insufficient for a repair
to differentiate valid and invalid patches. When using system test cases, the oracle is
responsible for two tasks: (1) verifying that the code runs without an error or an error
is appropriately handled, and (2) asserting that the functional behavior of the program
is correct. Both tasks may require complex implementations to assess the patches
sufficiently, as we will see with expression and pysnooper_3. The repair reported fixes
for both subjects as shown in Table 11 and 12 respectively, by satisfying the oracle
without resolving the underlying issue.

Expression. The subject expression is a simple parser designed to evaluate mathe-
matical expressions represented as strings based on the operators: negation, addition,
subtraction, multiplication and division. It works similarly to Python’s eval()-function.
The faulty behavior of expression is the lack of error handling when dividing by
zero. As a result, inputs such as "5 / 0" or "8 / (4 - 4)" cause the program
to fail. The oracle verifies whether the bug was fixed by first analyzing the error
output stream. If any error other than a ValueError is found, the oracle classifies
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the input as failing. Next, it compares the output of the program with an expected
value, calculated using Python’s eval()-function. The input passes if both values
are the same. The idea behind it is that if a ValueError occurs, the oracle assumes
that the faulty case was handled correctly, similar to the error handling of Python’s
eval()-function. However, this assumption is misleading. Instead of implementing a
correct error handling for the division by zero, the patches that achieved an F1 score
of 1 swapped the code line from the parsing of a division to the parsing of a constant,
in the form of Constant(int(token)). The way the function handles this code line, it
always has / (division operator) as the token, which causes a ValueError when parsing
it to an integer. Thus, all cases where a division appears in the expression (not only
when dividing through 0) throw a ValueError, thus being classified as passing by the
oracle. It is unclear, how exactly an oracle should assess how faulty behavior (dividing
through zero) should be handled by the program, but it is clear that simply checking
for a ValueError() is not sufficient to ensure the error was handled correctly. No true
repair for expression was found by FixKit [25].

Pysnooper 3. Similarly, the repair process for pysnooper_3 achieved an F1 score
of 1 in almost every configuration of test cases. Pysnooper [22] is a small program,
which describes itself as a poor man’s debugger. It uses Python’s decorator function-
ality to mark certain methods, which then log additional information for debugging.
Tests4Py [24] implements pysnooper_3 as a once buggy version of the program—the
name of a certain variable was mistakenly written as output_path instead of output.
This causes pysnooper_3 to throw a NameError when trying to use the variable, which
is part of the write()-function inside pysnooper_3. To catch this error, Tests4Py
implements Pysnooper as an ExpectErrAPI, which is initialized with the following byte
string:

expected = b"NameError: name ’output_path’ is not defined"

The API verifies whether this exact sequence of bytes appears in the standard error
stream returned by the process which executed the program with the input. If it is
part of the error stream, the input is classified as failing, indicating that the exact
NameError still persists. This also means that as long as no error is thrown, the program
passes all inputs, which the repair takes advantage of: For all patches that the repair
produced and identified as valid, the code was mutated to remove the execution of the
write()-function, in which the error occurs, or a function that invokes it. Since this
is not the intended fix, it demonstrates that the oracle is insufficient for accurately
determining whether the program has been correctly repaired.

This highlights a broader issue when relying on system tests and oracles for validating
patches, especially when repairing faults. Due to the repair process altering the behavior
of the main program, unforeseen patches can emerge that are unlikely to align with
the implemented oracle. This makes creating robust oracles a difficult challenge, even
for testing frameworks.
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7.3 Impossible to Fix

For the subjects calculator and pysnooper_2, the repair process failed to generate
any valid patches—whether complete or partial—that fixed the fault, as indicated
by a consistent F1 score of 0. This failure is related to the competent programmer
assumption [8], a common premise in many search-based repair techniques. This
assumption states that the correct mutation can be inferred from the surrounding
code, based on the idea that most faults result from small deviations of the intended
implementation that are easy to overlook. This assumption greatly reduces the search
space of possible mutations, while also proving to be an effective solution for some
subjects. However, this property also limits the capabilities of the repair process, as
we see in the following subjects:

Calculator. The fault in calculator is impossible to be repaired by FixKit [25]
due to calculator not containing the required code lines to repair itself. In detail,
the bug is derived from a custom implementation of the sqrt()-function with the
Newton-Raphson method. When parsing negative input values, the function will raise a
ZeroDivisionError, from which the corresponding oracle classifies the input as failing.
Similar to the oracle of expression, it specifically searches for error-handling that is
compromised of either a ValueError or NameError for inputs to pass. This would align
with the standard implementation of the sqrt()-function from Python’s math module
to pass all test cases. However, the oracle itself might be incomplete for correctly
verifying patches. For example, it does not consider raising an AssertionError as valid
error handling, even though that would also be a reasonable approach.

Nevertheless, due to competent programmer assumption, calculator is not able to
raise any of the errors and thus cannot be fixed by most search-based repair techniques.

Pysnooper 2. pysnooper_2 suffers from a fault caused by the absence of handling
for a specific input parameter, named custom_repr, which leads to an error. Resolving
this issue would require modifying the function signatures across multiple methods to
incorporate this parameter. However, since no existing code references custom_repr,
the repair process is unable to infer the necessary changes, making it infeasible for the
repair to fix pysnooper_2. In addition to this limitation, pysnooper_2 presents two
further challenges:

1. Successfully repairing the fault requires applying multiple instances of the same
type of mutation across different locations in the code. However, since FixKit [25]
selects mutation types randomly, it becomes a combinatorial problem. The
genetic approach makes it very unlikely to select all the right mutations for the
same patch.

2. pysnooper_2’s fault localization provides minimal information, assigning weights
of only 0 or 1 to code lines. This occurs because the error consistently arises
when the missing parameter is part of the input, which is caught at the beginning
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of the program. Consequently, fault localization fails to accurately pinpoint the
root cause of the issue, further reducing the likelihood of a successful repair.

All these factors demonstrate important challenges to consider when trying to resolve
defects using search-based repairs.

Solvability. The previous subsections highlighted the limitations of incorrect and
insufficient oracles across multiple subjects. However, even if all oracles were correctly
implemented, we suspect that only middle_1, middle_2, and markup_2 are solvable
among the eight total subjects.

8 Threats to Validity

The evaluation has the following threats to validity:

Internal Validity. The threats to internal validity relate to the correctness of the
evaluation pipeline and other tools used for the evaluation, such as FixKit [25] and
Tests4Py [24], which are still experimental and lack thorough testing for validity. Due
to the high amount of parameters and unpredictable results, it would be cumbersome
to verify the correctness in detail. During the implementation, verbose logging and
debuggers were used to assert that mutations were correctly applied and that fault
locations were modified according to the specified modifiers. However, we are concerned
about the correctness of Tests4Py, since the validation results led to irregular fitness
scores on the server environment, as stated in Subsection 5.2 about reproducibility. The
same applies to the correctness of the oracles, implemented in Tests4Py. As discussed
in Section 7, some oracles appear to behave incorrectly regarding the intended behavior
of resolving the fault. Although the oracle and produced patches of all subjects were
analyzed, we cannot guarantee the validity beyond what is stated due to the sheer
amount of configurations and different approaches that went into this evaluation.

External Validity. This thesis worked under the initial impression to evaluate more
real-world defects, which would have been provided by Tests4Py [24]. During early
testing, it was examined that many of the possible subjects were not effective in either
generating inputs or being repaired automatically. Since only the toy subject middle
produced valid results, this evaluation is not generalizable for real-world programs—
especially in the use of the proposed modifiers and mutation chances, as they likely
behave differently when scaled to larger programs. Additionally, other configurations
such as varying the mutation chance or testing different ratios of failing to passing test
cases would be necessary to evaluate the effects further and confirm proposed claims.
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9 Conclusion and Future Work

This thesis evaluates the impact of incorporating additional test cases in the auto-
mated program repair process. To gain detailed insights, the effects of test cases on
fault localization and validation were separately examined. The results indicate that
additional test cases for validation effectively reduced the occurrence of overfitted
patches—patches that only satisfy the test suite without correcting the underlying
fault in the program. However, no significant improvement regarding the refinement of
the genetic process was observed.

Furthermore, increasing the number of test cases in fault localization revealed that the
ratio of failing to passing test cases plays a crucial role in computing the suspiciousness
score. When using the Ochiai metric [1], it favors more passing tests, leading to better
repairs. To mitigate these effects, modifiers were introduced to FixKit [25] that alter
the way weights for code locations are incorporated into the repair process. Although
the modifiers do not increase the average true success rate over all configurations,
they can effectively utilize larger test suites, which underperform using the default
implementation with no modifications to the suggestions.

Additionally, the results indicate that incorporating more test cases for validation
significantly increased repair time, whereas additional test cases for fault localization
had only a marginal impact on the duration. In conclusion, this thesis confirms
previous findings [31,32] regarding the reduction of overfitted patches and identifies
the ineffectiveness of fault localization to be related to the ratio of failing to passing
tests in larger test suites.

Besides general improvements to the correctness and validity of the used approaches,
particularly regarding correct oracles and reproducible outcomes, we find the following
to be interesting future work:

Different Ratios of Test Cases. The evaluation only considered a very limited amount
of different ratios of test cases, with most configurations using a 1:1 ratio and
the baseline demonstrating the effects of a 1:10 ratio. Future evaluations could
examine the effects of incorporating various ratios of test cases to present which
ratio would be most effective in finding repairs.

Alternative Metrics. Instead of modifying fault localization suggestions post hoc,
alternative metrics other than the Ochiai [1] metric might infer interesting
insights. They may exhibit reduced dependency on the ratio of test cases or
even benefit from additional failing tests. Other common metrics to evaluate are
Tarantula [10] or Jaccard [1].

Mutation Chance. The general mutation chance w_mut has been shown to notably
impact the effectiveness of how many runs produce a valid patch. Evaluating
different mutation probabilities could provide further insights into the effectiveness
of specific metrics or modifiers.

Other Types of Program Repair. Although other types of program repair may utilize
test cases in distinct ways, many key observations of this thesis can still be
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applied. Evaluating semantic-based, pattern-based or learning-based repairs with
the addition of larger test suites and various configurations may provide insights
that can generally be applied to the field of automated program repair.

10 Availability of Data

All experiments and results for this thesis are available publicly. In Detail, the results
of the evaluation can be found in the form of CSV-files, containing the metrics for all
configurations, and detailed reports with the produced patches for every single run.
The current version can be found here:

https://github.com/MarwinLinke/additional_tests_fixkit

37

https://github.com/MarwinLinke/additional_tests_fixkit




References

[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. An evaluation of similarity
coefficients for software fault localization. In 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06), pages 39–46. IEEE, 2006.

[2] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of spectrum-
based fault localization. In Testing: Academic and industrial conference practice
and research techniques-MUTATION (TAICPART-MUTATION 2007), pages 89–
98. IEEE, 2007.

[3] B. Berabi, J. He, V. Raychev, and M. Vechev. Tfix: Learning to fix coding errors
with a text-to-text transformer. In International Conference on Machine Learning,
pages 780–791. PMLR, 2021.

[4] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[5] V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In 2010 Third International Conference on Software Testing,
Verification and Validation, pages 65–74. IEEE, 2010.

[6] M. Eberlein. Debugging benchmark, 2021.

[7] M. Eberlein, M. Smytzek, D. Steinhöfel, L. Grunske, and A. Zeller. Semantic
debugging. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
438–449, 2023.

[8] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they to real
faults? In 2014 IEEE 25th International Symposium on Software Reliability
Engineering, pages 189–200. IEEE, 2014.

[9] R. Gupta, S. Pal, A. Kanade, and S. Shevade. Deepfix: Fixing common c language
errors by deep learning. In Proceedings of the aaai conference on artificial
intelligence, volume 31, 2017.

[10] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 273–282, 2005.

[11] A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller. When does my
program do this? learning circumstances of software behavior. In Proceedings
of the 28th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pages 1228–1239, 2020.

i



[12] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned
from human-written patches. In 2013 35th international conference on software
engineering (ICSE), pages 802–811. IEEE, 2013.

[13] X. Kong, L. Zhang, W. E. Wong, and B. Li. Experience report: How do
techniques, programs, and tests impact automated program repair? In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE), pages
194–204. IEEE, 2015.

[14] Y. Lei, C. Sun, X. Mao, and Z. Su. How test suites impact fault localisation
starting from the size. IET software, 12(3):190–205, 2018.

[15] Y. Li, S. Wang, and T. N. Nguyen. Dear: A novel deep learning-based approach
for automated program repair. In Proceedings of the 44th international conference
on software engineering, pages 511–523, 2022.

[16] M. Martinez and M. Monperrus. Ultra-large repair search space with automatically
mined templates: The cardumen mode of astor. In Search-Based Software
Engineering: 10th International Symposium, SSBSE 2018, Montpellier, France,
September 8-9, 2018, Proceedings 10, pages 65–86. Springer, 2018.

[17] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[18] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program
repair via semantic analysis. In 2013 35th International Conference on Software
Engineering (ICSE), pages 772–781. IEEE, 2013.

[19] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated program repair for
evaluating the effectiveness of fault localization techniques. In Proceedings of the
2013 International Symposium on Software Testing and Analysis, pages 191–201,
2013.

[20] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pages 24–36,
2015.

[21] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pages 24–36,
2015.

[22] R. Rachum, A. Hall, I. Yanokura, et al. Pysnooper: Never use print for debugging
again, jun 2019.

ii



[23] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure worse than the
disease? overfitting in automated program repair. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 532–543, 2015.

[24] M. Smytzek, M. Eberlein, B. Serce, L. Grunske, and A. Zeller. Tests4py: A
benchmark for system testing. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, pages 557–
561, 2024.

[25] M. Smytzek, M. Eberlein, K. Werk, L. Grunske, and A. Zeller. Fixkit: A program
repair collection for python. 2024.

[26] M. Smytzek and A. Zeller. Sflkit: A workbench for statistical fault localization.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1701–1705,
2022.

[27] D. Steinhöfel and A. Zeller. Input invariants. In Proceedings of the 30th ACM
joint european software engineering conference and symposium on the foundations
of software engineering, pages 583–594, 2022.

[28] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adaptive
program repair: Models and first results. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 356–366. IEEE,
2013.

[29] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding
patches using genetic programming. In 2009 IEEE 31st International Conference
on Software Engineering, pages 364–374. IEEE, 2009.

[30] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E.
Tan, Y. Yieh, et al. Bugsinpy: a database of existing bugs in python programs to
enable controlled testing and debugging studies. In Proceedings of the 28th ACM
joint meeting on european software engineering conference and symposium on the
foundations of software engineering, pages 1556–1560, 2020.

[31] Q. Xin and S. P. Reiss. Identifying test-suite-overfitted patches through test case
generation. In Proceedings of the 26th ACM SIGSOFT international symposium
on software testing and analysis, pages 226–236, 2017.

[32] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan. Better test cases for better automated
program repair. In Proceedings of the 2017 11th joint meeting on foundations of
software engineering, pages 831–841, 2017.

[33] B. Yu, H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, and J. Zhao. Deeprepair:
Style-guided repairing for deep neural networks in the real-world operational
environment. IEEE Transactions on Reliability, 71(4):1401–1416, 2021.

iii



[34] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus. Test case
generation for program repair: A study of feasibility and effectiveness. corr,
abs/1703.00198, 2017. arXiv preprint arXiv:1703.00198, 2017.

[35] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. The fuzzing book,
2021.

Appendix

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den 20. Februar 2025
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Table 9: Results of markup_1.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.19 (6) 0.79 (9) 0.85 (4) 0.85 (2) 0.85
(1, 10) 0.51 0.51 0.85 0.51 0.41

Localization

(5, 5) (1) 0.85 (8) 0.85 (8) 0.85 0.85 0.62
(10, 10) (9) 0.85 (3) 0.85 (3) 0.85 0.62 (3) 0.63
(30, 30) (2) 0.85 (3) 0.85 (6) 0.85 (7) 0.85 (4) 0.63
(50, 50) 0.51 (8) 0.85 (2) 0.85 0.85 (5) 0.63

Validation

(5, 5) 0.35 0.28 0.17 0.79 0.85
(10, 10) 0.51 0.40 0.40 0.51 0.79
(30, 30) 0.51 0.51 0.85 0.51 0.44
(50, 50) 0.51 0.51 0.51 0.41 0.85

Complete

(5, 5) 0.85 0.30 0.17 0.85 0.19
(10, 10) 0.46 0.79 0.79 0.51 0.19
(30, 30) 0.51 0.62 0.48 0.85 0.85
(50, 50) 0.51 0.51 0.51 0.51 0.62

Table 10: Results of markup_2.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.80 0.35 (2) 0.80 (4) 0.80 (2) 0.80
(1, 10) (5) 0.80 0.80 (2) 0.80 (5) 0.80 (2) 0.80

Localization

(5, 5) (1) 0.80 (2) 0.80 0.80 (2) 0.80 (4) 0.80
(10, 10) (1) 0.80 (2) 0.80 (1) 0.80 (1) 0.80 (4) 0.80
(30, 30) (1) 0.80 (2) 0.80 (1) 0.80 (7) 0.80 (8) 0.80
(50, 50) (2) 0.80 (3) 0.80 (3) 0.80 (5) 0.80 (5) 0.80

Validation

(5, 5) 0.46 0.80 0.44 0.80 0.80
(10, 10) 0.46 0.43 0.80 0.43 0.80
(30, 30) 0.80 0.80 0.46 0.85 0.80
(50, 50) 0.46 0.80 0.80 0.80 0.80

Complete

(5, 5) 0.43 0.80 0.43 0.45 0.80
(10, 10) 0.43 0.80 0.85 0.80 0.85
(30, 30) 0.85 0.80 0.80 0.43 0.80
(50, 50) 0.80 0.80 0.46 0.46 0.80

v



Table 11: Results of expression.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.00 0.00 0.00 0.00 0.97
(1, 10) 0.00 0.00 0.00 (9) 0.97 0.00

Localization

(5, 5) 0.00 0.00 0.00 (6) 1.00 0.00
(10, 10) (10) 1.00 0.00 0.00 0.00 0.00
(30, 30) 0.00 0.00 0.00 (7) 1.00 0.00
(50, 50) (9) 1.00 0.00 0.00 (7) 1.00 (10) 1.00

Validation

(5, 5) (2) 1.00 0.97 0.00 (7) 1.00 (4) 0.97
(10, 10) (7) 1.00 0.81 0.97 0.81 0.81
(30, 30) (8) 1.00 0.00 0.00 (10) 1.00 (9) 0.97
(50, 50) (4) 1.00 0.97 0.00 (10) 1.00 (10) 1.00

Complete

(5, 5) 0.00 0.00 0.00 (8) 1.00 (8) 0.89
(10, 10) (3) 1.00 0.00 0.00 0.00 0.00
(30, 30) 0.00 0.00 0.00 (7) 1.00 (7) 1.00
(50, 50) 0.00 0.00 0.00 0.00 (10) 1.00

Table 12: Results of pysnooper_3.

Variant Test cases Seeds
1714 3948 5233 7906 9312

Baseline (1, 1) 0.00 (6) 1.00 0.00 0.00 0.00
(1, 10) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00

Localization

(5, 5) (1) 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(10, 10) (1) 1.00 (5) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(30, 30) (4) 1.00 (5) 1.00 0.00 (1) 1.00 0.00
(50, 50) (4) 1.00 (5) 1.00 0.00 (1) 1.00 0.00

Validation

(5, 5) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(10, 10) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(30, 30) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(50, 50) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00

Complete

(5, 5) (1) 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(10, 10) (1) 1.00 (5) 1.00 (1) 1.00 (1) 1.00 (1) 1.00
(30, 30) (4) 1.00 (5) 1.00 0.00 (1) 1.00 0.00
(50, 50) (4) 1.00 (5) 1.00 0.00 (1) 1.00 0.00
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