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Abstract.
Objective Automatic Program Repair has gained significant attention as a
means to reduce cost and effort involved in debugging software. This thesis
evaluates various APR approaches for Python, including GENPROG, CARDU-

MEN, KALI and MUTREPAIR.
Method To compare the effectiveness of these approaches, we designed an
experimental study based on the student assignment benchmark, investi-
gating the repair rate, runtime, and differences in the search space. Given
the inherent randomness of some of the approaches, we applied statistical
hypothesis testing to ensure the robustness of our findings. Furthermore,
we evaluated the impact of genetic programming on APR to understand its
potential benefits and limitations in this context.
Results PYGENPROG finds the most patches among all approaches. However,
each approach is able to find patches for certain subjects that no other ap-
proach can repair, justifying their individual relevance. The impact of genetic
programming on APR is not as strong as initially expected and requires further
optimization to improve its effectiveness.
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1 Introduction

Software bugs can have severe consequences. A recent example is the CrowdStrike
incident in July 2024, where a faulty update to the Falcon software caused widespread
system failures. This led to massive disruptions in sectors such as finance, healthcare,
and aviation, with estimated financial damages of 4-6 billion dollars [15]. To prevent
such incidents, developers invest significant time in debugging and fixing errors, a process
that is both time-consuming and costly [27].
To improve debugging efficiency, various automated techniques have been developed.

Some focus on explaining bugs [10,11,21], while others aim to localize [1,19,20,53,59,60]
them. However, the actual process of fixing these issues remains largely manual. This
is where Automatic Program Repair (APR) comes into play, enabling the automated
correction of software bugs without human intervention.
There are many different APR approaches. Some use evolutionary search algorithms to

generate patches, while others rely on predefined patterns to expand the search space
and target specific types of bugs. However, no single approach is equally effective for all
defects. Each technique has unique strengths and weaknesses depending on the nature
of the bug. This makes combining multiple approaches, known as APR collections, a
promising direction for research.
One such collection is FIXKIT, a framework for evaluating various APR methods for

Python. Most previous research has focused on Java and C, while Python, one of the
most widely used programming languages, has received comparatively less attention.
However, Python is extremely versatile, with applications in web development, machine
learning and data science. This makes APR equally important for this language. This
work aims to implement and evaluate established APR approaches specifically for Python.
Our contributions As part of this thesis, established APR approaches were imple-

mented in Python, including GENPROG, CARDUMEN, KALI, and MUTREPAIR. For evalua-
tion, a new benchmark for APR was used, based on student programming assignments. A
comprehensive evaluation was conducted to assess the strengths and weaknesses of each
approach, with a particular focus on the impact of genetic programming on automatic
program repair.
Paper Overview Section 2 provides the necessary background for the implementation

of FIXKIT, covering topics such as genetic programming, fault localisation, minimisation
and the different APR approaches. The implementation of CARDUMEN is described in
detail in Section 3. The experimental design is outlined in Section 4, where the research
questions, methodology, and experiments conducted for this study are presented. In
the following section, section 5, we evaluate the approaches and discuss the results.
Limitations and threats to the validity of the research are addressed in Section 6. Section
7 is a discussion of related work on associated problems, and finally, we conclude our
paper in Section 8.
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2 Background

This section provides an overview of the theoretical foundations of search-based automatic
program repair and the approaches implemented in FIXKIT. Search-based automatic
program repair can be divided into the following components: fault localization 2.2, genetic
programming 2.1, and minimization 2.3. Each of these components is discussed in detail in
its respective section. Subsequently, the various approaches from FIXKIT and their specific
characteristics are described in detail. This includes, in particular, GENPROG 2.4.1, an
evolutionary approach to automatic program repair that is considered one of the most
prominent methods in this field of research. GENPROG has significantly contributed to
establishing this research domain. Due to its pioneering role and widespread recognition,
it is frequently used as a baseline for evaluating new approaches [6, 45,47,57,64].
MUTREPAIR 2.4.2 and KALI 2.4.3 both adopt an exhaustive search approach instead of
the evolutionary strategy employed by GENPROG. MUTREPAIR specializes in mutating
suspicious if statements to alter control flow, whereas KALI focuses solely on removing
statements. Rather than generating a comprehensive fix for the bug, KALI aims to expose
weaknesses in test suites. CARDUMEN 2.4.4, on the other hand, uses an evolutionary
approach combined with a large search space facilitated by template generation

2.1 Genetic Programming

In this chapter and the remaining thesis, a candidate is a representation of a program
we try to automatically repair. A population is a collection of candidates. Genetic
Programming is an evolutionary algorithm inspired by Darwinian’s theory of biological
evolution to automate the process of program generation [18]. There are many applications
for genetic programming, including categorizing news stories, performing optical character
recognition, and developing medical signal filters. [2]. The fundamental concept is to
evolve computer programs through simulated evolutionary processes, where the goal
is to find solutions that perform well on a given task. To find a solution, we need an
initial candidate in the scope of automatic program repair that is the buggy program
represented as an abstract syntax tree. The typical steps of genetic programming are

1. Deviate the candidates of the population

2. Evaluate the fitness of the candidates

3. Selection of the next generation

Deviate the candidates of the population There are several approaches to modifying
the population in genetic programming. One such approach is mutation, where a candidate
solution undergoes changes. In nature, small genetic deviations are beneficial for adapting
to changing environments and gaining a competitive advantage over other species. In the
context of Automatic Program Repair using genetic programming, mutation operators
modify not genes, but code. The manner in which the code is mutated depends entirely
on the mutation operator used. In GENPROG, for instance, mutation operators can
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insert, replace, or delete code fragments. While genetic mutations in nature occur
largely by chance, in APR, the mutation process is guided and controlled through fault
localization 2.2.
Another fundamental mechanism for altering genetic material is crossover, which in

nature occurs through sexual reproduction. In genetic programming, crossover involves
the exchange of parts between two genetic candidates. In the context of automatic
program repair, this entails swapping portions of their respective syntax trees.

Evaluate the fitness of the candidates In nature, an individual’s fitness is determined
by its ability to survive - the longer an organism lives, the higher its fitness and the
greater its chance of reproduction, allowing it to pass on its approved genes. In genetic
programming, a fitness function is required to evaluate the quality of a candidate. The
success of genetic programming is largely dependent on the design of this function. In
Automatic Program Repair, the test suite serves as a crucial component for assessing a
candidate’s fitness. Simply put, the more test cases a candidate passes, the higher its
fitness; conversely, failing more tests results in a lower fitness.

Selection of the next generation In nature, the fittest candidates are selected for
reproduction. Similarly, genetic programming employs various selection mechanisms.
One might wonder why we do not simply select the fittest candidates. The reason is
to prevent the risk of converging too quickly to a local optimum, which could hinder
further improvement. One commonly used selection method is the Roulette Wheel
Selection. In this approach, the sum of all fitness values is computed, and candidates
are selected based on weighted random selection. The probability of a candidate being
chosen is determined by its fitness relative to the total fitness of the population. This
method strikes a balance between exploration and exploiting fitter candidates, but it
can also introduce a high degree of randomness [17]. Roulette Wheel Selection is the
selection method used in FIXKIT and our experiments 4.3. Another notable selection
method is Tournament Selection. In this approach, two candidates are randomly chosen,
and the fitter one advances to the next generation. This method is computationally
efficient, easy to implement, and highly parallelizable. Additionally, it ensures that
weaker candidates still have a chance to survive and contribute to diversity within the
population [2]. In practice, selection strategies often combine Elitism - where the best
candidates automatically progress - with stochastic selection methods such as Roulette
Wheel or Tournament Selection. This hybrid approach helps maintain strong solutions
while promoting diversity, ultimately enhancing the effectiveness of genetic programming.

Challenges Despite the proven effectiveness of genetic programming, several challenges
must be considered. One significant risk is converging to a local optimum rather than
finding the global optimum. To mitigate this, various selection strategies are employed.
Additionally, the search space in genetic programming is vast and nearly infinite, with
countless possible mutations and combinations. Handling this complexity requires
application-specific adaptations. For instance, CARDUMEN prioritizes particularly suitable
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templates and variable combinations for mutation, as discussed in Section 2.4.4. Another
key challenge is bloat, where unnecessary mutations increase the size of candidates without
being an essential step in the solution. Strategies for minimizing the final candidate while
maintaining its ability to solve the problem are explored in Section 2.3.

2.2 Fault Localization

Identifying the optimal location for mutating a candidate is one of the primary challenges
in automatic program repair. The underlying idea is that a statement consistently
executed during undesired behaviour is likely the root cause of that behaviour and should
be targeted for mutation. This process, known as fault localization, aims to pinpoint such
faulty statements. Fault localization represents a crucial stage in the process of automatic
program repair, as missing or inaccurate fault localization can result in incorrect or failed
repairs.
The initial conceptualisations in this regard were put forth by Weiser, who proposed

the technique of program slicing [59,60]. A slice is a reduced part of the program which
still behaves as the original program in a specific regard, i.e. failing a test case.

2.2.1 Spectra Fault Localization

The execution of a test suite can provide data beyond the identification of passed and
failed tests. This data includes insights into the specific statements executed by a test
case, which enables the localization of suspicious statements. This data is called program
spectra and there are several types of spectra. These include block hit spectra, which
are flags that are set when a particular code block is executed during a test case run,
and block count spectra, which are counters that are incremented each time a code block
is executed. A finer-grained scope can be used to examine individual statements. This
method is known as spectrum based fault localization.

Tarantula is a popular approach in this domain. Tarantula [19, 20] assigns every
statement a suspicious score from 0 to 1, with 1 being the most suspicious and 0 the
least suspicious. The suspicious score is computed by the following equation:

suspiciousness(s) =

failed(s)
total failed

passed(s)
total passed

+ failed(s)
total failed

(1)

The amount of failing test cases which execute statement s is described by failed(s)
and total failed is the number of all failing test cases in the test suite. Contrary passed(s)
describes the amount of passing test cases which execute statement s and total passed is
the number of all passing test cases. The intuition behind this equation is that statements
that are executed primarily by failing test cases are more likely to be faulty, statements
that are executed primarily by passing test cases are less likely to be faulty. Contrary to
other spectrum based techniques, Tarantula allows for some tolerance that the fault can
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be occasionally executed by a passed test. This tolerance shows positive impact on the
fault localization.

Ochiai is a similarity coefficient originally used in molecular biology [43]. Abreu et al. [1]
proposed that fault localization can be reduced to a similarity problem by representing
the spectra as a hit matrix.

Statement
Test case 1 2 3 4 Error

1 × × ×
2 × ×
3 × × ×
4 ×

Table 1: Similarity Matrix of Ochiai

In Table 1, each row represents a test case and indicates which statements were executed
during its run. At the end of each row, an entry specifies whether the test case passed
or failed. Viewing the table by columns, each column corresponds to a statement and
shows in which runs that statement was executed. The last column exclusively shows the
errors that occurred during execution. The goal is to identify the vector of a statement
that most closely resembles the error vector, as it is hypothesized that this statement
is responsible for the errors. To test their hypothesis, Abreu et al. borrowed Ochiai a
similarity coefficient, originally used in molecular biology [43]. The coefficient is shown
in Equation 2. The results were promising, as Ochiai proved to be more efficient than
Tarantula. In fact, Ochiai is at least as effective as Tarantula and even surpasses it in
specific cases.

suspiciousness(s) =
failed(s)√

totalfailed× (failed(s) + passed(s))
(2)

There are many more similarity coefficients, but Tarantula and Ochiai are the most
prominent ones [62]. This is because they are simple to implement, yet effective. They
are often used as a baseline to evaluate new coefficients.
There is no single approach that consistently outperforms all others across all scenarios.

In other words, an optimal spectrum-based technique does not exist. This implies that
the choice of technique must be tailored to each specific use case [65].
Spectrum based fault localisation is constrained by potential vulnerabilities in test

cases. In the incident that a test case contains a bug, the intended functionality of the
program will not be validated by the test cases, which may result in a wrong localization
of the fault.
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2.3 Minimisation

Automatic Program Repair often utilizes genetic programming, where random mutations
and crossover operations are applied to genetic candidates, guided solely by a fitness
function. While it is possible that the combination of these random mutations eventually
leads to a correct program, the contributions of individual mutations can vary significantly.
In some cases, every mutation may represent a small but crucial building block for the
final solution. In other cases, the genetic algorithm might perform many irrelevant
modifications before discovering a key mutation that ultimately results in a correct
program.
In practice, the solution is often a mix: some modifications are essential to the program’s
correctness, while others are irrelevant. These irrelevant changes, often referred to as
junk code, have no significant impact on the program’s behaviour.
If this is the case, the patch needs to be minimized to include only the relevant changes.
This not only enhances readability but also reduces unnecessary computations during
every execution of the corrected program.

2.3.1 Delta Debugging

Delta Debugging [66] is a minimisation algorithm that applies the concept of binary
search. The program is iteratively divided into smaller parts while ensuring that a desired
property is preserved. In the original paper, test cases were minimized to help better
understand the effects of specific faults. For our explanation of the ddmin algorithm, we
apply this concept to mutations.

Ideal Scenario Assume an Automatic Program Repair approach using genetic pro-
gramming finds a fix for the faulty program after four mutations. Delta Debugging then
divides the mutations into subsets of two mutations each, as illustrated in Figure 2 First,
the subset consisting of mutations 1 and 2 is tested, resulting in a failure of the test
suite. Subsequently, mutations 3 and 4 are tested, and they pass the test suite. As a
result, mutations 1 and 2 are excluded from the search space, as they have been identified
as irrelevant to the repair. The successful subset, comprising mutations 3 and 4, is
further divided into two subsets, each containing a single mutation. Mutation 3 is tested
individually first but fails to satisfy the test suite. Afterwards, mutation 4 is tested and
successfully passes the test suite. This process identifies a minimal mutation set, in this
case consisting of a single mutation, which is sufficient to repair the faulty program. This
represents an ideal scenario for delta debugging. However, what happens if the process
deviates from this ideal scenario and a combination of mutations responsible for the fix
is not immediately tested together within a subset?

Practical Example In order to consider a more comprehensive example, several termi-
nologies need to be introduced. Let mut represent the original set of all mutations. Let
mut′ denote the set of mutations that remain in the current step. Let n represent the
number of subsets into which the mutations are divided at each step. Initially, we set
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Mutations
Step Subset 1 2 3 4 test
1 ∆1 1 2 . . ×
2 ∆2 . . 3 4 ✓
3 ∆1 . . 3 . ×
4 ∆2 . . . 4 ✓
Result . . . 4 Done

Table 2: Ideal Scenario of Delta Debugging

n = 2.
In this practical example, four mutations representing a Patch for a buggy program are
analysed, as illustrated in Figure 3. Initially, the algorithm tests the subsets (1,2) and
(3,4). In this instance, the worst-case scenario occurs: both subsets fail. There are two
possibilities to consider.

• Increasing the subsets increases the probability of finding a passing subset.

• Decreasing the subsets increases the progress if a passing subset is found, but
the probability of finding one is lower.

Delta Debugging employs a combination of these two strategies. Initially, smaller
subsets are tested by doubling the number of subsets, setting n = 2n. If one of these
subsets passes, the process continues with that subset. If none of them pass, larger
complements are created, defined as ∇1 = mut′ − ∆1. In the example, the smaller
subsets tested in steps 3, 4, 5, and 6 did not yield any successful results. However, the
complement ∇2 tested in step 8 is the first subset smaller than mut that satisfies the
desired property: passing the test suite. At this point, the set of mutations is reduced to
the complement, setting mut′ = ∇2. Additionally, the granularity is decreased by one,
such that n = 3.
What is the reason for decreasing the number of subsets n by exactly one? In each

step, the subsets ∆ have a fixed size. The complement ∇ is always mut′ reduced by one
∆. This means reducing mut′ to a specific complement while simultaneously decreasing
n by one, reusing the original set from the previous step, is possible. These subsets have
already been tested, allowing the algorithm to proceed directly with the new complements.
The repetition of identical sets can be observed in the table 3 at step 3,5 and 6, as well
as steps 9,10, and 11. The first new tests are introduced in steps 12 and 13 with the
complements ∇1 and ∇2. In step 13 a new passing subset is identified. This subset is
minimal, as all smaller subsets have already been tested and were all failing.
Based on the two examples in 2 and 3, all possible scenarios that can occur during

minimisation with delta debugging were considered. Summarising, the rules that define
the ddmin algorithm are as follows:

• reduce to subset if an ∆ is found that satisfies the desired property, mut′ is
updated to ∆ and reset n to two.
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Mutations
Step Subset 1 2 3 4 test
1 ∆1 1 2 . . × n = 2
2 ∆2 . . 3 4 × increase granularity → n = 2n
3 ∆1 1 . . . × n = 4
4 ∆2 . 2 . . ×
5 ∆3 . . 3 . ×
6 ∆4 . . . 4 ×
7 ∇1 . 2 3 4 ×
8 ∇2 1 . 3 4 ✓ reduce to subset → n = n− 1
9 ∆1 1 . . . × n = 3
10 ∆2 . . 3 . ×
11 ∆3 . . . 4 ×
12 ∇1 . . 3 4 ×
13 ∇2 1 . . 4 ✓ found minimal passing subset

Result 1 . . 4 Done

Table 3: Practical Example of Delta Debugging

• reduce to complement if an ∇ is found that satisfies the desired property, mut′

is updated to ∇ and n is decreased by one.

• increase granularity if neither a subset nor a complement satisfies the desired
property, the granularity is doubled, i.e. n = 2n, provided that n < |mut′|.

• otherwise if none of the above cases applies, it implies thatmut′ is already minimal,
and the process is complete.

2.3.2 Hierarchical Delta Debugging

Hierarichal Delta Debugging [44] (HDD) is a further development of Delta Debugging.
This approach leverages the tree-structured nature of certain inputs, making it applicable
exclusively to inputs that exhibit hierarchical structures, such as programming languages,
HTML, or XML. The input is represented as a tree, which is feasible as long as the input
can be described using a context-free grammar. The algorithm operates by traversing the
tree from its root through multiple levels of nodes down to the tree’s leaves. Each node
is assigned to a specific level. At each level, the ddmin algorithm is applied to identify
the minimal configuration. During this process, each node and its children are treated as
a single unit that is not further differentiated at that level. Consequently, if a node is
removed at a particular level, all its children are removed as well. This approach achieves
significant minimization, particularly in the upper levels of the tree, as excluding a node
also eliminates all its descendants. Another advantage of this algorithm is that every
intermediate input remains syntactically correct. This effectively narrows the search
space, focusing only on configurations that preserve a desired property, which inherently
requires syntactic correctness.
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2.3.3 HDDr

Hierarchical Delta Debugging recursively [23] (HDDr) introduces an optimization to
HDD. In HDD, configurations often undergo testing that are derived from different,
unrelated parts of the program. This issue arises due to the level-wise progression of the
algorithm. In other words, when performing ddmin, HDD no longer uses the hierarchical
structure of the input. To address this limitation, HDDr abandons the level-by-level
traversal of the tree. Instead, it applies ddmin exclusively to sibling nodes. This approach
offers two significant advantages: first, ddmin operates on smaller, more focused inputs;
second, the inputs under consideration are logically related. As the name suggests, HDDr
also incorporates recursion. Specifically, a node and all its children are minimized before
moving to the next node.

2.4 Approaches Implemented in FIXKIT

2.4.1 GenProg

GENPROG employs genetic programming to find a repair for the faulty program [58].
Genetic programming is based on the principles of evolution. The objective is to identify
the most fit candidate through the application of selection, crossover, and mutation [18].
GENPROG operates at the level of statements within a faulty program, utilizing the
abstract syntax tree generated by that program. Therefore, the mutation operators
employed for the mutation of a statement can replace a statement with another, remove
a statement or insert a new statement [27]. The population is defined as all candidates
in a generation. In each iteration of GENPROG, a random selection of candidates from
the population is subjected to mutation. In addition, the mutation operator for each
candidate is randomly selected []. GENPROG uses test cases and a fitness function to
evaluate the fitness of a candidate. The fitness function is based on the number of failing
tests that are fixed by the patch and the number of passing tests that are still passing
with the patch. The fitness is defined as

FGenProg(P ) = wPosT × |{t ∈ PosT |P passes t}|
+wNegT × |{t ∈ NegT |P passes t}|

(3)

where P is the patch, PosT is the set of passing tests, NegT is the set of failing
tests, and wPosT and wNegT are the weights for the passing and failing tests, respectively.
The candidates with the highest fitness are selected for continued evolution [58]. One
disadvantage of genetic programming is that it can lead to irrelevant changes. To
remove all unnecessary changes, delta debugging or structural differencing is applied to
the remaining candidates at the end of the process [27]. In conclusion, the GENPROG

algorithm comprises the following steps:

1. Fault Localization

2. Selection of Candidates
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3. Selection of Mutation Operator for each Candidate

4. Evaluation of Population

5. Repeat 2.-4. until repair found

6. Removal of irrelevant changes

as shown in Figure 1. All the approaches follow the GENPROG main repair loop, but
with key differences. These are highlighted in the corresponding section.

Fitness
Function

Prog.

in1

in2

Test
Suite

out

Return repaired

Program

Select
Candidate 5

Mutate
Candidate 7

Fault
Localization

2

Create Initial
Candidate

1

Evaluate Fitness of
Population

3

Select
Statement 4

Stopping criterion
fulfilled?

yes

no

fill population

GenProg

Select Mutation
Operator 6

New
Cand.

Figure 1: Overview of GENPROG algorithm
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2.4.2 MutRepair

The MUTREPAIR algorithm first got proposed by Debroy and Wong [8]. The concept of
MUTREPAIR originates from a mutation technique, that was initially used for assessing the
efficacy of a test suite. The mutation technique introduces syntactic code changes into a
program and then observes if the test suite is capable of detecting these alterations [8]. The
MutRepair algorithm modifies the program flow by introducing mutations to suspicious
if conditions, for instance, from == to != or < to <=. The approach considers three kinds
of mutations operators: relational, logical and unary [41]. Furthermore, MutRepair
performs an exhaustive search [38] on the existing population. It considers all candidates
in the current generation and applies each of the predefined mutation operators to each
individual candidate, as shown in Figure 2. In comparison, GenProg employs a different
approach. Instead of applying all mutations to all candidates, GenProg only applies one
randomly selected mutation to a randomly selected subset of candidates [].

Fitness
Function

Op1

Op2 C'

C'1

Op1

Op2 C''
C''1

Prog.

in1

in2

Test
Suite

out

Return repaired

Program

Exhaustive
Search 5

New Population
6

Fault
Localization

2

Create Initial
Candidate

1

Evaluate Fitness of
Population

3

Select most
suspicious
Statement 4

Stopping criterion
fulfilled?

yes

no

fill population

Selected
statement

Kali & MutRepair

New
Pop.

C'2

C''2

Figure 2: Overview of KALI and MUTREPAIR algorithm

2.4.3 Kali

The KALI program repair approach follows the GENPROG repair loop, but leverages
mutation operators that remove or skip certain parts of the code that are considered
as the most likely cause of the failing tests based on the fault localization. Similar to
MUTREPAIR, KALI utilizes an exhaustive search and applies each mutation operator to
each candidate as shown in Figure 2. The purpose of KALI is a bit different to the other
approaches. The intent of KALI is not to repair a program, instead it is to find weak test
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suites [38]. This is because Kali never adds something of value to the code, but instead
changes the flow of the program.

2.4.4 Cardumen

CARDUMEN [40] is the most sophisticated of the presented approaches. The goal of
CARDUMEN is to find the maximum number of test-suite adequate patches, by extending
the repair search space and exploring as many patches as possible. The approach operates
on the premise that valuable insights can be gained from every patch identified. Unlike
other approaches that impose a fixed generation limit, CARDUMEN instead utilizes a time
limit, continuing its search until the allotted time expires while preserving all discovered
patches. The core idea of CARDUMEN is based on the competent programmer hypothesis,
which suggests that most programmers are competent enough to produce source code
that is either correct or only slightly differs from the correct code. Instead of reusing
unmodified code like GENPROG, the concept of mining code templates is introduced by
CARDUMEN. A code template is a statement in which each variable has been replaced
by a placeholder. Code templates themselves are not new and were previously used
by PAR [22] and SPR [35]. However, there is a key difference: PAR and SPR use
predefined, manually written templates. In contrast, CARDUMEN mines the templates
during the repair process from the faulty program. The expansion of the search space is
made possible by the introduction of code templates. The repair always consists of a
replacement of the suspicious statement by an instance of a template. A template instance
represents a template in which the placeholders are substituted with variables that are
within the scope of the suspicious statement. The repair process can be divided into two
distinct phases: the mining of templates and the navigation of the template space. The
initial phase is the mining of templates based on the statements contained within a given
program. The templates take a single statement and introduce placeholders for each
variable present in that statement. The templates that have been mined are referred to
as the template pool. When a template is randomly selected from the template pool
for mutation, the placeholders are replaced by arbitrary variables that are present in
the scope of the fault location. The collection of template instances can be large. For
example, if there are ten variables in Scope and four placeholders in the template, then
we create 10,000 template instances (i.e. 104). CARDUMEN proposes a solution for this
problem. For the second Phase, navigation of the search space, the repair approach
creates a probabilistic model based on the occurrence of variable names.

pmln(v1, . . . , vn) =
number of statements containing (v1, . . . , vn)

all statements with n variables

Sequentially, CARDUMEN creates different entries for the model.
Each entry pmli(v1, . . . , vi) represents the probability of occurrence of a set of i variables
in a statement with i variables. The selection of the template instance, which is then
applied at the location of the faulty code, is based on the probabilistic model.
This approach aims to replace the original code with a similar one by selecting templates
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that closely match the structure of the faulty code. The placeholders within the template
are filled based on how frequently the variables co-occur in the program. Both of these
design decision are directly rooted in the competent programmer hypothesis.
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Figure 3: Overview of CARDUMEN algorithm

Background Summary

In this section, we have presented all relevant background information for
search-based APR.

In particular, we examined Genetic Programming in the context of APR, as
well as Spectra Fault Localization using the similarity coefficients Tarantula
and Ochiai. Minimisation also plays an important role in APR, as unnecessary
mutations can occur when searching for a patch with APR. We explored how to
minimize code while preserving specific properties through example applications of
Delta Debugging. Finally, we introduced the approaches GENPROG, CARDUMEN,
KALI, and MUTREPAIR in detail, as these are implemented in FIXKIT.
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3 Implementation of Cardumen in Python

In this section, we examine the modifications to FIXKIT that were necessary for imple-
menting CARDUMEN in Python. These enhancements are summarized in Figure 4. We
will have a closer look at the implementation of templates and the probabilistic model (1b).
Additionally, we will discuss Template Instance Creation (6), which required optimization
to achieve a reasonable runtime in Python. Lastly, we will address a modification that
was made to seamlessly integrate PYCARDUMEN into FIXKIT and for ensuring a fair
comparison across all approaches in our evaluation.

3.1 Templates

All code mutations in FIXKIT rely on Python’s ast (Abstract Syntax Tree) library,
including the templates used in PYCARDUMEN. For each statement in the faulty program
that we attempt to repair, a template is created. During the initialization of the template
class, an AST statement object is passed, which serves as the foundation for the template.
Internally, all variables within the statement are collected. This process is essential

as it allows us to store these variables as placeholders, which can later be replaced with
new variables. The VarNamesCollector class is responsible for this task. It extends the
ast.NodeVisitor class and implements a visit function, enabling it to traverse the tree-like
structure of the AST statement. During traversal, it identifies nodes and performs specific
operations, such as storing all variables found within the statement.
Additionally, the template maintains a mapping that records the current variable

assignments for each node, which can be modified later when instances of the template
are created, allowing for flexible adaptation during the repair process.
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Figure 4: Overview of CARDUMEN algorithm
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3.2 Probabilistic Model

Cardumen’s mutation operator involves inserting template instances instead of the most
suspicious statement. To generate a template instance from a template, a new combination
of variables must be assigned to the placeholders. The probabilistic model determines
this assignment.
The probabilistic model is implemented using a dictionary, where the key represents a

combination of variables, and the value corresponds to the probability of selecting that
combination for creating a template instance. The probability is computed using the
following equation:

pmln(v1, . . . , vn) =
number of statements containing (v1, . . . , vn)

all statements with n variables

To compute the probabilities, it is necessary to generate all possible variable combina-
tions. This process involves iterating over the statements of the faulty program, collecting
variables using the VarNamesCollector class, and computing all possible combinations
using the combinations with replacement function from Python’s itertools library.
For each variable combination, the probability is calculated based on a predefined

equation. This requires determining how many statements contain the exact same variable
combination and how many statements contain the same number of variables in general.
To achieve this, all statements are iterated over again, comparing their variable sets and
variable counts to the generated combinations.

The selection process for assigning variable combinations to template instances follows
the principle that the more frequently a variable combination appears, the better suited
it is for the template.

3.3 Creation and Selection of Template Instances

In the original Cardumen approach, a template is first selected, and then instances of
this template are created for all possible variable combinations. The placeholders within
the template are assigned variables from these combinations. Subsequently, a weighted
random selection based on the probabilistic model determines the final template instance
to be used.
In PYCARDUMEN, a template is still selected, but instead of generating all possible

template instances, the probabilistic model is filtered by the number of variables in the
selected template. A weighted random selection is then applied to choose a single variable
combination, which is used to initialize just one template instance.
This optimization significantly reduces the number of unnecessary template instance

creations, making PYCARDUMEN feasible. Without this modification, the approach was
computationally too expensive and impractical due to excessive runtime.
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3.4 Difference Between Cardumen and PyCardumen

There is a fundamental difference between CARDUMEN and PYCARDUMEN. The original
CARDUMEN approach is designed to maximize the number of plausible repairs, as its
authors believe that each unique patch provides valuable insights, ultimately contributing
to the generation of a correct patch. Consequently, in the original paper, CARDUMEN

was executed with a time limit per run rather than a predefined number of iterations.
In contrast, PYCARDUMEN employs an evolutionary search where the process terminates

either upon discovering a successful patch or after reaching the maximum number
of generations. This modification was introduced to ensure comparability between
the approaches implemented in FIXKIT during evaluation, focusing solely on whether
PYCARDUMEN can identify a repair, rather than the number of repairs it generates.
However, the original CARDUMEN approach, with a time limit instead of a generation

limit, can be seamlessly integrated into FIXKIT if needed.

Implementation Summary

In this section, we had a closer look at the implementation of PYCARDU-

MEN. Specifically, we focused on the creation of templates, which are dynamically
generated based on the underlying subject code base. We also discussed the
probabilistic model, which influences the selection of the template instance used
for mutation. Unlike the original CARDUMEN, PYCARDUMEN first selects the
variable assignment for the template and then creates the template instance.
Additionally, instead of using a time limitation to decide when to terminate,
PYCARDUMEN implements a generation-based termination criterion.
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4 Experimental Design

This chapter presents the experimental design of the study, which aims to systematically
address the research questions. It outlines the research questions, describes the selected
benchmark, and details the experimental procedure to answer the research questions.
This structured approach ensures that the results are valid, reproducible, and meaningful.

4.1 Research Questions

This study formulates three key research questions aimed at assessing the effectiveness and
applicability of mutation-based automatic program repair for the Python programming
language. These questions serve as a guiding framework for the conducted experiments.
The analysis of the data generated through these experiments enables a systematic
investigation of both the potential and the limitations of the examined approaches.

RQ1: To what extent can the established approaches implemented in FIXKIT find
repairs in Python? The first research question examines the fundamental ability of the
approaches implemented in FIXKIT to repair errors in Python code. Previous studies have
predominantly focused on programming languages such as Java or C, so it is important
to assess whether these approaches are also effective for dynamically typed languages
such as Python. Due to the inherent differences between dynamically typed languages
such as Python and statically typed languages such as Java or C, conceptual challenges
may arise.

RQ2: How do the approaches compare to each other in runtime and repairs
found? The second research question examines the efficiency and effectiveness of the
repair approaches. The focus is on comparing execution times and the number of
successfully performed repairs. Additionally, this question aims to differentiate the
approaches from one another or identify potential similarities. This analysis is crucial
for gaining a deeper understanding of the strengths and weaknesses of each approach,
enabling informed decisions about their applicability in different scenarios, and identifying
potential optimisation opportunities.

RQ3: Is a genetic approach useful for automatic program repair? Finally, the
third research question explores whether genetic programming is a suitable choice for
Automatic Program Repair. In order to answer this question, we analyse the evolution of
the maximum fitness of the entire population over generations. Additionally, we examine
whether there is a tendency regarding when a repair is found.

Answering these research questions provides a comprehensive foundation for evaluating
the effectiveness of the repair approaches, determining their suitability for Python, and
identifying their limitations.
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4.2 Student Assignments

In order to address the research questions, the Refractory benchmark from the University
of Singapore will be utilised. This benchmark was developed by a team of researchers
specialising in the field of Automatic Program Repair, and it comprises 1,783 distinct
subjects derived from student submissions for programming exercises. These subjects are
divided into five different ’questions’. Initial experiments with the benchmark revealed
that 59 out of the 1,783 subjects were already plausible before any modifications were
applied. Each task is accompanied by a problem description, a working reference solution,
and a corresponding test suite. The test suite includes 11 test cases for Question 1, 17
for Question 2, 6 for Questions 3 and 4, and 5 for Question 5.
In the first task, students are required to design a function that searches for a specific
element in a sequence in linear time. If the element is not found, the function should
return the length of the sequence instead. The reference solution consists of five lines of
code, while the submitted solutions from participants may vary in length. The second
task involves extracting the unique days or months from a given set of birthdays and
returning them. The reference implementation consists of 19 lines of code. In the third
task, students are required to process a list by removing all duplicate elements. The
result should be a new list containing only unique elements. The reference solution
accomplishes this in 6 lines of code. The fourth task requires sorting a set of tuples, where
each tuple represents a person with gender and age. The goal is to order the tuples in
descending order based on age, ensuring that older individuals appear first. Additionally,
each age should only appear once in the final output. The reference implementation
achieves this in 8 lines of code. The fifth task requires extracting the k largest numbers
from a given set and sorting them in descending order. The reference implementation
accomplishes this in 6 lines of code.

Question Exercise Subjects Test cases

1 linear search 575 11
2 birthdays 435 17
3 remove duplicates 308 6
4 sorting tuple 357 6
5 extract k-biggest numbers 108 5

Table 4: Overview of the student assignments benchmark
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4.3 Experimental Setup

The student assignment benchmark consists of 1,783 different subjects. Since the ap-
proaches rely partly on probabilistic decision-making, each approach is executed 10 times
on the benchmark to ensure statistically meaningful measurements. While certain studies
advocate for 30 repetitions [4, 5], the majority of evaluations in the literature employ
only 10 repetitions [26, 40,47]. With 10 repetitions, this results in 17,830 executions per
approach. Given that the FIXKIT implementation supports four approaches, the total
number of executions is 71,320. An upper time limit of 1,800 seconds per run is imposed.
Should a run not complete within this time frame, it is terminated and marked as invalid,
and is not repeated. The following run is then initiated. Consequently, the number of
valid data points per approach for our evaluation may be fewer than 17,830.
The evolutionary approaches, PYGENPROG and PYCARDUMEN, are executed with a
population size of 40, a maximum of 10 generations, and a mutation probability w mut
of 0.06. The mutation probability w mut determines whether a suspicious statement
undergoes mutation. The exhaustive search approaches are executed with a maximum of
one generation. Such parameters are common in the literature when evaluating search-
based automatic program repair [26, 47].
During execution, the maximum achieved fitness, the runtime, and whether a repair was
found are recorded in a CSV file, which can be accessed in the git repository.

Server The experiments are executed using Slurm on the Gruenau servers. In order to
ensure the usability of Slurm while maintaining comparable results, particularly regarding
the runtime of the approaches, the execution is restricted to the servers gruenau7 and
gruenau8. These two servers are of the same model, equipped with an Intel Xeon 6354
CPU and one terabyte of RAM.

4.4 Research Protocol

Prior to the analysis of the data, it is necessary to clean the data. To this end, the data
points from the 59 subjects that were already plausible before the repair are removed.
Additionally, data points that did not result in a valid outcome are excluded. An invalid
outcome is defined as a run that was interrupted by an exception. In our case, these are
primarily Timeout Exceptions, as the run exceeded the 1, 800 second time limit.
In order to address Research Questions 1 and 2, the effectiveness of the approaches in
terms of their ability to generate patches will be examined. A statistical hypothesis test
will be performed to compare the approaches. Given that more than two approaches are
being compared, an ANOVA test will be employed if the data is normally distributed, or
alternatively, a Kruskal-Wallis test will be used if the data is not normally distributed.
Additionally, we will examine the unique and common fixes of the approaches to compare
their search spaces.
In order to address the efficiency aspect of Research Question 2, the approaches will be
compared in terms of their runtime. Two additional statistical hypothesis tests will be
conducted. Firstly, the total runtime will be compared, examining the times of all valid
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runs. Secondly, a subset of the total runtime, the time to fix, will be analysed separately.
The time to fix refers to the time required to successfully generate a patch.
In order to evaluate the usefulness of genetic programming in the context of APR, an
analysis will be conducted of the generation in which a repair was identified. Additionally,
the development of the fitness over the generations will be analysed.
If new questions arise at any point during the evaluation that are necessary to answer

the research questions, new exploratory experiments are conducted.

Experimental Design Summary

In this section, the research questions were introduced, guiding us to-
ward a comprehensive evaluation of APR in Python. The student assignment
benchmark and the parameters for the experiments were also presented.
Finally, the plan for analysing the collected data was outlined.
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5 Evaluation and Discussion

In this section, we evaluate the data collected using FIXKIT on the student assignment
benchmark. The objective of this study is to answer the following research questions:

RQ1: To what extent can the established approaches implemented in FIXKIT find
repairs in Python?

RQ2: How do the approaches compare to each other in runtime and repairs found?

RQ3: Is a genetic programming approach useful for automatic program repair?

Initially, the repairs generated by the APR approaches are analysed to better understand
potential differences between them. To this end, a statistical hypothesis test is performed
to determine whether the observed differences in repairs found are statistically significant.
To analyse and compare the different search spaces of the approaches, we investigate
which ones generate patches for the same subjects. A Venn diagram is used to illustrate
these overlaps. Particular attention is paid to the unique patches of an approach, i.e.
patches that were only found by one approach and no other.
Apart from the identified repairs, runtime is another crucial factor for APR. To compare
the approaches in terms of their execution time, the average and median runtime across
all runs are considered. A distinction is made between time to fix and overall runtime.
Finally, the fitness in PYGENPROG is examined in more detail. Additionally, the distri-
bution of the identified repairs across generations is analysed.
Initially, 71,320 executions were attempted, however, 260 of these were terminated with-
out a valid result, indicating that they encountered an exception. In the majority of
cases, this was a Timeout Exception, which occurred when the execution exceeded the
predefined time limit of 1,800 seconds. Furthermore, 590 runs involving already plausible
subjects from the dataset were removed. Consequently, the final dataset comprises 68,700
valid data points, which form the basis for the subsequent evaluation.

5.1 Repairs

The most substantial question regarding Automatic Program Repair is whether it is,
at all, finding a repair. A repair is a modification to the source code that ensures the
program passes the test suite. The box plot in Figure 5 illustrates the number of repairs
found by each approach across all runs. The number of repairs identified by GenProg
ranges from 101 in the worst run to 128 in the best run. The average, at 117.1, is slightly
lower than the median of 120.0. A greater spread of data below the median can be
observed. This is indicated by the lower quartile being larger than the upper quartile and
the presence of two lower outliers. Overall, the repairs are strongly centred around the
average, with a variance of 58. This suggests that PYGENPROG consistently generates a
stable number of repairs, although with a slight tendency towards lower outliers.
Similarly, for PYCARDUMEN, we observe a slightly lower average of 90.7 compared to the
median of 93.5, but with a significantly higher spread of values compared to PYGENPROG,
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with a variance of 139. However, the values are more evenly distributed across the upper
and lower quartiles than in PYGENPROG, except for a strong outlier with 63 repairs found.
This suggests that PYCARDUMEN exhibits more variance in the number of repairs found.
Since both approaches are based on a genetic algorithm and are highly dependent on
probabilities, it is crucial to run them multiple times. Only through repeated runs can
a more accurate and realistic picture of their true performance be obtained. In order
to provide a comprehensive evaluation of the maximum potential of each approach on
the student assignment benchmark, additional runs would likely have been beneficial.
However, since the primary focus of this study is to make comparisons between the
approaches, the 10 runs selected are deemed to be adequate. This number is consistent
with the typical number of executions used in similar studies in the literature [26, 40, 47].
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Figure 5: Box plot of the repairs found by the approaches

PYKALI finds a minimum of 81 repairs and a maximum of 98 repairs. The mean
is 89.4, and the median is 90.0. With a variance of 28, the differences between the
runs are smaller compared to PYGENPROG and PYCARDUMEN. However, the smallest
variance between the runs is observed with PYMUTREPAIR. With an average of 87.7
and a median of 87.0, as well as a variance of 4, the maximum number of repairs found,
92, is even depicted as an outlier in the graph in Figure 5. Although the fluctuations
in PYMUTREPAIR are limited compared to the other approaches. There should be NO
differences at all between the runs in either PYKALI or PYMUTREPAIR. This is due to
both approaches using exhaustive search rather than evolutionary search. This means
that in each repair attempt, all possible mutations are tested, and if a repair exists within
their search space, it should be found each time since the entire search space is explored.
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However, this is not the case here, suggesting implementation errors in FIXKIT. More
details can be found in the Threats to Validity section 6. The values discussed in this
paragraph are summarized again in Table 5.

Statistics PyGenProg PyCardumen PyKali PyMutRepair

mean 117.1 90.7 89.4 87.7
median 120.0 93.5 90.0 87.0
variance 58 139 28 4
minimum 101 63 81 85
maximum 128 105 98 92

Table 5: Descriptive statistics for each approach, including mean, median, variance,
minimum, and maximum values

5.1.1 Statistical Hypothesis Test

In this section, a statistical hypothesis test is conducted to determine whether the
apparent differences between the approaches, as shown in Figure 5, are statistically
significant. A summary of the test can be found in the appendix 8.1. A statistical test
analyses data to determine whether there is significant evidence to support or reject a
hypothesis. In our case, we want to know if there are differences in the effectiveness
of the approaches. The effectiveness of the approaches is measured in repairs found.
The commonly used significance level of α = 0.05 is adopted, as recommended in the
literature [4,5]. The significance level α is a predefined threshold that guides the decision
to reject the null hypothesis. In other words, it represents the probability of rejecting
the null hypothesis when it is in fact true.
Statistical tests compute a p-value, which indicates the probability of obtaining at least
as extreme values as those observed in our data, assuming that the null hypothesis is true.
If the p-value falls below the predefined significance level, the null hypothesis is rejected.
However, this does not imply that the null hypothesis is false. Rather, it suggests that
observing such data under the assumption that all test conditions, including the null
hypothesis, are true is unlikely [16, 56].
To begin with, the following hypotheses are formulated:

Null hypothesis H0 There is no difference in the effectiveness of the approaches,
i.e. the mean of repairs found is the same for all approaches.

Alternative hypothesis H1 At least one approach differs significantly from the
others in terms of effectiveness.

In order to test these hypotheses, it is necessary to compare all approaches with each
other. In cases involving more than two groups, as is the case in this study, either the
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ANOVA test or the Kruskal-Wallis test can be applied. The ANOVA test is appropriate if
the data are normally distributed, whereas the Kruskal-Wallis test is used for non-normally
distributed data.

Checking the prerequisites Before conducting the statistical hypothesis test, the
prerequisites for the ANOVA test must be verified. First, the normality of the data
distribution is assessed, which can be done either analytically or graphically. In this case,
we first test the data analytically using the Shapiro-Wilk test and the Kolmogorov-Smirnov
test. For this purpose, the following hypotheses are formulated:

Null hypothesis H0 The values are normally distributed.

Alternative hypothesis H1 The values are not normally distributed.

The Shapiro-Wilk test assesses how well the data conforms to a normal distribution.
A W-statistic close to 1.0 indicates a strong fit to normality. All approaches achieve a
score of 0.87 or higher, suggesting a reasonable but not perfect fit. The p-values are low
but do not fall below the predefined significance threshold. The only Exception being
PYKALI, whose p-value of 0.85 is significantly higher than those of the other approaches.
Additionally, PYKALI exhibits the highest W-statistic among all approaches.

Approach W-Statistics P-Value Result

PyGenProg 0.88 0.15 No Rejection of H0

PyCardumen 0.87 0.11 No Rejection of H0

PyKali 0.96 0.15 No Rejection of H0

PyMutRepair 0.90 0.24 No Rejection of H0

Table 6: Results of the Shapiro-Wilk Test

The Kolmogorov-Smirnov test can be applied to any distribution and measures the
maximum difference between the empirical and theoretical distribution functions, which
in this case is the normal distribution. A larger D-statistic indicates a greater deviation
from normality, whereas a smaller value suggests a better fit. In this case, all p-values
are well above 0.05. However, the D-statistics are not low enough to indicate a good
fit between the data and the normal distribution. The only exception is again PYKALI,
which achieves a D-statistic of 0.14.
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Approach D-Statistics P-Value Result

PyGenProg 0.25 0.49 No Rejection of H0

PyCardumen 0.24 0.52 No Rejection of H0

PyKali 0.14 0.96 No Rejection of H0

PyMutRepair 0.24 0.53 No Rejection of H0

Table 7: Results of the Kolmogorov-Smirnov test

Since the analytical tests did not yield a clear result, we further examine the data
graphically. In the figure, the identified repairs are represented as a probability density
histogram, with a normal distribution function overlaid for comparison. In my opinion,
the repairs found by PYGENPROG, PYCARDUMEN, and PYMUTREPAIR do not follow a
specific distribution but appear to be randomly dispersed. In contrast, PYKALI exhibits
the closest resemblance to a normal distribution.
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Figure 6: Histogram plots of the probability distribution of the repairs found by FIXKIT

Although the analytical tests did not definitively reject the null hypothesis, their results
were not entirely supportive of it either. In conjunction with the graphical representation,
we conclude that the data most likely do not follow a normal distribution, with the
exception of the data from PYKALI. Consequently, the assumptions for the parametric
ANOVA test are not met, and instead, the non-parametric Kruskal-Wallis test must be
conducted.
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Kruskal-Wallis Test The test resulted in a p-value of 2.46 × 10−5, which is smaller
than the previously set significance level of 0.05. Therefore, the null hypothesis can be
rejected. This means that there are significant differences in the number of repairs found
between the approaches. To find out which approaches differ significantly from each
other, a post-hoc dunn test was performed.
The results show that PYGENPROG differs significantly from all other approaches in terms
of the number of repairs found. The mean differences make it clear that PYGENPROG

performs significantly better than the other approaches. This is also indicated by the box
plot in Figure 5, but the dunn test now provides statistical confirmation. Surprisingly, the
dunn test shows no significant difference in effectiveness between the other approaches.
Although this was not immediately apparent in the box plot, the dunn test confirms that
there are no significant differences between them. We conducted statistical tests to ensure
that the observed effects in our data are not due to chance. These tests help differentiate
between genuine relationships and random fluctuations, providing an objective basis for
our conclusions.

Group Comparison P-Value Result Mean Difference

PyGenProg
vs PyCardumen

0.0139 Rejection of H0 26.4

PyGenProg
vs PyKali

0.0008 Rejection of H0 27.7

PyGenProg
vs PyMutRepair

0.00003 Rejection of H0 29.4

PyCardumen
vs PyKali

1.0000 No Rejection of H0 1.3

PyCardumen
vs PyMutRepair

0.7805 No Rejection of H0 3.0

PyKali
vs PyMutRepair

1.0000 No Rejection of H0 1.7

Table 8: Results of pairwise comparisons of the post-hoc Dunn test

5.1.2 Differences in the Search Space

In the last section, we saw that PYGENPROG finds the most repairs, but does that mean
you should only run PYGENPROG and save the computing time for the other approaches?
We want to examine this question in more detail in this section.

Before diving into the analysis, let’s first clarify some key terms. The table 9 presents
both the total patches and the unique patches found. In this context, a patch refers to a
subject from the student assignment benchmark that was repaired by a given approach
in any run where a repair was successful. This means that if multiple runs of the same
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approach repair the same subject, it is counted as only one patch. The percentage next
to the total patches represents the patch rate, which indicates the proportion of patches
found by a specific approach relative to the total number of patches found across all
approaches. Unique patches refer to subjects that were only repaired by a single approach
and not by any others. The percentage next to the unique patches in the table represents
the unique patch rate, which indicates the proportion of unique patches relative to the
total number of unique patches across all approaches.

Approach Found Patches Unique Patches

PyGenProg 237 (63%) 57 (30%)
PyCardumen 144 (39%) 53 (28%)
PyKali 145 (39%) 21 (11%)
PyMutRepair 97 (26%) 57 (30%)

Table 9: Overview of the total found and unique patches by every approach.

All approaches together successfully repair a total of 374 patches, resulting in a repair
rate of 21.69%. Of these 374 patches, 188 are repaired by only a single approach. The
overlaps between the approaches in terms of the patches they have repaired are visualized
in Figure 7. Among the individual approaches, PYGENPROG achieved the highest number
with 237 patches. PYKALI and PYCARDUMEN show almost the same results with 145
and 144 patches respectively, while PYMUTREPAIR provides the lowest number of repairs
with 97 patches.

An interesting aspect is the consideration of unique patches, i.e. patches that were
only found by a single approach. Two striking observations can be made here:

PyKali finds the lowest number of unique patches with 21 unique patches, which
corresponds to a unique patch rate of 11%. The high overlap of PYKALI, particularly
with PYGENPROG and PYCARDUMEN, can be observed in Figure 7. The largest exclusive
overlap, referring to patches that were repaired by exactly two approaches and no others,
is found between PYGENPROG and PYKALI, with 74 patches being repaired by both
approaches. One possible explanation for this could be that both approaches use the
delete a statement operator as a mutation operator. To test this hypothesis, PYGENPROG

was run again on the 74 subjects that were repaired exclusively by these two approaches
— but this time without the delete mutation operator. Surprisingly, PYGENPROG was
still able to successfully generate a patch for 71 of the 74 subjects. This shows that the
common mutation operator is not the decisive reason for the high overlap of the patches
found. It should be emphasised at this point that two approaches that find a patch for
the same subject do not necessarily generate identical patches.
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PyMutRepair, PYGENPROG and PYCARDUMEN find a similar amount of unique patches,
with a unique patch rate of around 30%. An analysis of the Venn diagram reveals minimal
overlap between PYMUTREPAIR and any of the other approaches. Specifically, PYGEN-

PROG and PYMUTREPAIR share 38 patches, while PYCARDUMEN and PYMUTREPAIR

have 19 patches in common. In contrast, PYKALI and PYMUTREPAIR exhibit the least
overlap, sharing only 4 patches. The high proportion of unique patches and the limited
overlap with other approaches can be partly attributed to the relatively low total number
of patches identified by PYMUTREPAIR. Nevertheless, these observations suggest that
PYMUTREPAIR explores a largely distinct search space compared to the other approaches.
This clear difference can be explained by the specific way PYMUTREPAIR works. While
the other approaches generate patches by deleting, replacing or inserting statements -
with PYCARDUMEN also inserting templates from the faulty programs - PYMUTREPAIR

takes a different approach. It transforms existing conditions within if statements, which
leads to a change in the control flow. For example, a condition of the form if x < 10 is
converted to if x <= 10. Such faults can only be addressed by other approaches if the
modified condition (e.g., if x <= 10) already exists somewhere in the program. Since
this is typically not the case, PYMUTREPAIR can effectively address a specific category of
faults, as clearly reflected in the results.
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Figure 7: Venn Diagram of all repairs found by FIXKIT
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5.2 Runtime

In this section, a more detailed examination of the runtimes of the various approaches
is presented. Initially, it is evident from Table 10 that there is a substantial difference
between the average and median values of an approach, whether considering runtime or
time to fix. An observation of Figures 8 and Figure 9 reveals a considerable number of
outliers. A number of factors may be responsible for the variations in runtime, including:

• Differences in the size of the subjects

• The specific working mechanisms of the approaches, which are dependent on the
structure of the subject

• Server load variations

The differences in subject size are relatively small, as all subjects contain fewer than
100 lines of code. The runtime of PYCARDUMEN and PYMUTREPAIR depends on the
structure of the subjects. For PYCARDUMEN, the runtime is influenced by the number
of variables in an individual statement and in the scope. The more variables present,
the more variable combinations PYCARDUMEN must compute for the templates. On the
other hand, PYMUTREPAIR’s runtime is directly impacted by the number of if-statements
in the subject, as it only performs transformations on if-statements.
However, the most plausible explanation for the high variance in runtimes appears to
be the variable server load during the experiments. The experiments were executed
using slurm on the gruenau cluster, a factor that is likely to have had an impact on the
runtimes. Further details can be found in the Threats to Validity section 6.
These factors should be taken into account when evaluating the validity of this analysis.
Nevertheless, the credibility of the analysis is supported by the large dataset of 68,700
data points, which should at least reflect the general trends of the approaches under
investigation.

Metric PyGenProg PyCardumen PyKali PyMutRepair

average runtime 99.7 559.8 38.4 57.8
median runtime 69.6 443.7 28.6 38.9

average time to fix 33.4 136.5 20.1 63.2
median time to fix 13.8 70.5 12.3 47.9

Table 10: Overview of the runtime and time to fix by each approach

Comparison of Approaches Based on Runtime Now let us compare the approaches
in terms of their runtime. Runtime is defined as the total execution time required by
the program, regardless of whether a repair was successfully found or not. The recorded
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times include both successful and unsuccessful repair attempts.
To analyse the runtimes of the approaches, a statistical hypothesis test is conducted once
again. In contrast to the previous chapter, this section will not focus on individual values
but will instead provide a summary of the test results. All detailed values can be found
in the appendix 8.1.
First, the runtimes of the approaches are examined for normal distribution. The tests
indicate that the data for all approaches do not follow a normal distribution. Therefore,
the non-parametric Kruskal-Wallis test must be applied. This test assesses whether
independent samples originate from the same population. If this assumption holds,
there is no significant difference between the groups. The null hypothesis tested by the
Kruskal-Wallis test is as follows: The runtimes of the different approaches do not differ
significantly.
The Kruskal-Wallis test showed with a p-value of 0 that at least one approach differs
significantly from the others in terms of runtime. A subsequent post-hoc analysis using
the Dunn test shows that all approaches differ significantly from each other.
The data presented in the table 10 clearly show that the exhaustive search approaches have
both lower average and median runtimes when compared to the evolutionary approaches.
According to the literature, the validation of candidates is known to be the most time-
consuming factor [57].
A plausible explanation for this observation is the relatively small size of the subjects. It
is faster to explore all possible combinations exhaustively than to run ten generations
of the evolutionary algorithm. With the chosen parameters of ten generations and a
maximum population size of 40, this amounts to validating a total of 400 candidates.
On the other hand, PYKALI employs eight mutation operators, which are applied to all
suspicious statements. A subject would need to contain 50 statements for PYKALI to
generate the same number of candidates as PYGENPROG. Given the relatively small
size of the programs under consideration, this is rather unlikely. A similar behaviour
is observed in PYMUTREPAIR, which uses ten mutation operators, though these are
exclusively applied to if-statements.
To verify whether the generated candidates might be the cause of the differences in
runtime, a sample of 50 subjects from the benchmark was used to measure the candidates
generated by PYKALI and PYMUTREPAIR. The measurements revealed that PYKALI

generates an average of 53.6 candidates, while PYMUTREPAIR produces an average of
66.75 candidates. Both values are significantly lower than the 400 candidates generated
by the evolutionary approaches.
The comparatively long runtimes of PYCARDUMEN could be due to the fact that the
subjects and test suites are relatively small, which means that the precomputing tasks
are more significant. However, it should be noted that I unfortunately have no specific
measurements of how much time PYCARDUMEN used on which task, so this is only an
assumption.

Comparison of Approaches Based on Time to Fix In this section, we focus exclu-
sively on the time to fix for each approach, which is defined as the runtime required to
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Figure 8: the runtime for each approach

find a repair. All detailed values of the statistical hypothesis test can be found in the
appendix 8.1. The time to fix data is a subset of the runtime data and, similarly, does not
follow a normal distribution. The Kruskal-Wallis test, with a p-value of 0, confirmed that
at least the time to fix of one approach differs significantly from the others. A subsequent
post-hoc Dunn test revealed that all approaches differ significantly from one another.
A significant difference between PYGENPROG and PYKALI was not immediately apparent
when examining the medians in Table 10. However, this was confirmed through statistical
testing. A comparison of the runtime in Figure 8 with the Time to Fix in Figure 9 reveals
a convergence of the times across the different approaches. In addition to the p-value,
the Kruskal-Wallis test calculates an H-value, which measures differences in the rank
distribution of the datasets. For the analysis of rank distribution, the data points from
the samples are first pooled together, and then each value is assigned a rank, with the
smallest value receiving rank 1, the second smallest value receiving rank 2, and so on.
The ranks of the values within each sample are then analysed for differences. A higher
H-value indicates a more uneven rank distribution among the data points. The H-value
for the time to fix is 1, 501.68, which is significantly lower than the H-value of 37, 257.37
for the runtime.
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This convergence can be explained by the fact that when one of the evolutionary
approaches finds a patch, the repair process is successfully terminated, and the remaining
generations are no longer executed. In other words, if a repair is found in the first
generation, only 40 candidates need to be created and validated, which is fewer than the
observed created number of candidates in the exhaustive approaches. How often this is
the case will be analysed in the next section 5.3.
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Figure 9: The time to fix for each approach
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5.3 Fitness

In this section, we aim to analyse the fitness metric, which is crucial for genetic pro-
gramming. First, we will examine how the generated patches are distributed across
generations i.e., how many patches were found in Generation 1, Generation 2, and so on.
Subsequently, we will track the development of the maximum fitness across generations
within the population.

Generations to Fix In the bar chart in Figure 10, there is a clear visual concentration
of the found patches in the first four generations. There are 641 patches found within the
first four generations. In the repairs section, the term “patches” refers to the different
subjects for which a repair was successfully found. In this section, however, all runs that
resulted in a fitness of 1.0 are counted as patches. Therefore, if a subject had a patch
found across three different runs (not necessarily in the same generation), each of these
runs is counted as a separate patch.
In the bar chart, the number of patches found decreases across generations, with two

exceptions in generations 6 and 7. A clear downward trend is observable.
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Figure 10: The generations GENPROG found a patch

Evolution of the Fitness Over Generations In this section, we examine the evolution of
fitness across generations in PYGENPROG. Each generation consists of 40 candidates, and
the maximum fitness achieved by the fittest candidate in each generation was recorded.
Figures 11 and 12 illustrate the fitness progression of the fittest candidate per generation
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for a randomly selected sample of 10 subjects. To maintain clarity and avoid visual
clutter, only 10 runs were randomly chosen for this representation, as displaying all runs
would have been overly complex.
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Figure 11: the line plot of the fitness values of some subjects over the generations

Figure 11 presents runs in which no patch was found, labelled as NoPa short for “No
Patch”. A stagnation in the maximum fitness across all 10 generations is observed in 7 out
of 10 runs. In the remaining 3 runs, at least two distinct fitness values are recorded. The
occasional decline in fitness to a lower value is expected and intentional, resulting from the
selection mechanism used for advancing candidates to the next generation. Specifically,
the roulette wheel selection method, introduced in the genetic programming section, was
applied in these experiments. These fitness drops serve to prevent premature convergence
and ensure a more diverse exploration of the search space. Notably, significant jumps
in fitness following mutations can be seen in runs NoPa3 and NoPa7. These abrupt
increases suggest the occurrence of random “lucky hits” rather than the gradual fitness
improvement typically associated with genetic programming. A similar pattern can be
observed in Figure 12, which focuses exclusively on runs where a patch was successfully
found. Patches 2, 5, 8, and 9 exhibit abrupt jumps in fitness, increasing from 0.3 to
1.0 following a single mutation. This sudden improvement suggests the presence of
random, favourable mutations rather than a steady, progressive optimization process. An
exception to this pattern is observed in Patch 6, which displays five distinct maximum
fitness values, with fitness increasing relatively consistently over generations. This gradual
progression aligns more closely with the expected behaviour of genetic programming,
where incremental improvements are typically anticipated.
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Figure 12: the line plot of the fitness values of some successful repairs over the generations

To determine whether these observations are merely coincidental or provide a realistic
representation of genetic programming in the context of Automatic Program Repair,
Figure 13 illustrates the unique values that the maximum fitness achieves across genera-
tions. The data is presented in two separate bar charts: one for all runs and another
exclusively for runs that resulted in a successful patch. The left bar chart of Figure 13
illustrates the changes in maximum fitness across all 17,240 runs, with nearly 10,000 of
these runs showing no change in maximum fitness across all 10 Generations, suggesting
that the fitness remained consistent with that of the initial subject. The frequency of
different maximum fitness values decreases significantly as the number of distinct values
increases. The right bar chart in Figure 13 shows the unique values of maximum fitness
for successful repairs. One of the fitness values is always 1.0, as this indicates that a
patch has been found. This means that the runs with only one maximum fitness value
have a fitness of 1.0, which is the only value they attain, indicating that these runs found
a patch in the first generation. In Figure 13, we observe just over 200 runs with a single
maximum fitness value, which aligns perfectly with the number of patches found after the
first generation, as shown in Figure 10. Conversely, the runs with two distinct maximum
fitness values initially had a value below 1.0 and then jumped to 1.0 after a specific
mutation, similar to Patch 8 in Figure 12. Only from three unique fitness values onwards
can we begin to observe the behaviour expected from genetic programming.
The dysfunctional behaviour of genetic programming, as evidenced by the fitness progres-
sion of certain subjects, is further confirmed by the fact that 80% of the runs show either
no change or only a single change in maximum fitness. The data suggest that genetic
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programming for APR does not achieve the anticipated effect of a gradual improvement
in fitness, ultimately leading to a successful repair. Instead, it appears more like a
waiting game for the one correct mutation that results in the desired behaviour. If this
assumption holds, fitness evaluations could potentially be omitted, as they are among
the most computationally expensive operations.

There are several reasons why our findings on genetic programming in the context
of automatic program repair may not be generalizable. First, the test subjects used
in our study are relatively small, which means that the search space for PYGENPROG

is not optimal. Since GENPROG relies on the competent programmer hypothesis, this
limitation could have negatively affected our results. Second, the effectiveness of genetic
programming is highly dependent on the fitness function, which in our case is the test suite.
If certain functionalities are tested by multiple test cases, they are automatically weighted
more heavily than those that are less extensively tested. Consequently, the quality of the
test suite plays a crucial role in shaping the results. A potentially inadequate test suite in
the student assignment benchmark may have introduced biases or negatively influenced
our findings. Both of these issues are addressable and should be further investigated in
future research.
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Figure 13: The left bar chart shows distinct maximal fitness values per subject, the right
shows the values only from repairs
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5.4 Summarizing our Findings

During our evaluation, we made several insightful observations:

1. PYGENPROG finds the most repairs within a reasonable time frame.

2. There is no significant difference in the number of repairs found between PYCAR-

DUMEN, PYKALI, and PYMUTREPAIR.

3. The unique repairs are evenly distributed among PYGENPROG, PYCARDUMEN, and
PYMUTREPAIR, suggesting that a diverse collection of APR approaches is beneficial.

4. PYCARDUMEN faces challenges with computational time.

5. PYGENPROG discovers the most repairs in the early generations.

6. Genetic programming does not work as smoothly for APR as initially expected.

These findings provide a comprehensive overview of the strengths and weaknesses of
the evaluated approaches and the impact of genetic programming for APR. Building
upon this, we now address the specific research questions.

RQ1: To what extent can the established approaches implemented in FIXKIT find
repairs in Python? The established approaches in FIXKIT demonstrate a notable ability
to find repairs in Python. Specifically, the approaches achieve a Repair Rate of
21.69% on the student assignment benchmark. This indicates that a substantial
proportion of the subjects within the benchmark can be repaired by the approaches in
FIXKIT, but there is still considerable room for improvement.

RQ2: How do the approaches compare to each other in runtime and repairs found?
PYGENPROG outperforms the other approaches overall, finding the most repairs
within a reliable time frame. The approaches PYGENPROG, PYCARDUMEN, and
PYMUTREPAIR exhibit evenly distributed unique repairs, highlighting their value
as complementary components within FIXKIT. If computing time is a critical factor,
using PYGENPROG and PYMUTREPAIR may yield the quickest results when looking for
fixes.

RQ3: Is a genetic programming approach useful for automatic program repair?
While genetic programming can be effective, its contributions to automatic program
repair remain uncertain. As seen in Figure 13, fitness stagnates in most cases, and
significant jumps in fitness are typically observed after finding the correct
mutation, resembling the outcome of a “lucky hit”, as shown in Figure 11 and 12.
In most cases, the patches are found in the early generations, suggesting that the genetic
programming is not being used properly. Additionally, no significant time advantage is
gained over the exhaustive search approaches, likely due to the small size of the subjects
involved. However, genetic programming does offer a theoretical advantage in repairing
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multiple bugs simultaneously, such as those requiring mutations at multiple locations or
different bugs within the same project. The likelihood of hitting the correct mutations,
however, is relatively low. Thus, optimizations are needed for genetic programming to
be a practical solution for APR. In its current form, the approach does not sufficiently
justify the high costs associated with candidate validation.
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6 Threats to Validity

In this section, we discuss the several challenges we encountered during our work. The
main threats to the validity of our findings fall into three categories: internal validity,
external validity, and construct validity.

Internal Threats to Validity One issue that stood out during evaluation was the
variability in multiple runs of the exhaustive search approaches. Despite investigation,
the exact cause of this inconsistency remains unknown.
Another issue pertains to candidate validation. We discovered late in the process that, in
some runs, the 59 already functional subjects were not always correctly identified before
the repair process started, indicating a validation issue. Despite investigation, the root
cause remains unclear.
Another challenge was the lack of reproducibility in experiment runs, even when using
a fixed seed for Python’s randomization. This issue had multiple causes. First, there
was an inconsistency in the order of suggestions returned by SFLKIT. These suggestions
represent the most likely faulty locations where mutations should be applied. This
inconsistency was resolved by sorting the suggestions, ensuring a deterministic order
across runs. Second, FIXKIT assigns a numerical identifier to each statement for mutation
purposes. However, this numbering was dependent on the order in which files were
processed. On the Gruenau servers, this file order was inconsistent, leading to variations
in statement numbering across runs. This issue was mitigated by sorting the files in
lexicographical order, ensuring a consistent numbering scheme. Although these issues
were mitigated, we were unable to rerun the experiments due to time constraints.
Additionally, the runtime measurements appear to have been significantly influenced by
server load. As a result, the timing data used in our evaluation should be interpreted
with caution.
We made every effort to implement all approaches as closely as possible to their original
papers, but there is always room for error.

External Threats to Validity The subjects in the student assignments benchmark are
relatively small, each containing fewer than 50 lines of code. In contrast, real-world
programs often span tens of thousands of lines. This limitation restricts the search
space for PYGENPROG and PYCARDUMEN, thereby reducing the likelihood of finding a
valid repair. Therefore, our findings may not directly generalize to large-scale real-world
applications.
A potential limitation is whether student assignments adequately represent real-world APR

challenges, particularly given that some approaches assume the competent programmer
hypothesis.
PYKALI is designed to expose weak test suites rather than actively repair programs.
However, it still found a significant number of repairs in the student assignment benchmark,
suggesting that the test suites in this benchmark may not be comprehensive enough for
all edge cases.
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We did not test repairs for bugs spanning multiple files, but FIXKIT has the fundamental
implementation to handle multi-file bug fixes.
Our experiments were conducted with 10 runs per subject, which is standard in research.
However, some studies recommend up to 30 runs to achieve more stable results. Additional
runs could provide a more accurate and reliable evaluation by reducing the influence
of outliers. With only 10 runs, outliers have a stronger impact on the overall results,
whereas a higher number of runs would make the findings more robust against such
anomalies.

Construct Validity Threats A known issue in APR is the generation of plausible patches
rather than truly correct ones. In our study, we did not manually verify whether the
generated patches were genuinely correct or merely passed the given test cases. Based
on existing research, it is likely that many of them are only plausible fixes rather than
actual corrections. Due to the high number of generated patches, manual inspection was
impractical. However, a larger and more comprehensive test suite could help reduce the
risk of plausible but incorrect patches.
In our evaluation, we analysed the development of the maximum fitness over generations.
However, not all candidates in a generation necessarily have the same fitness, so some
will have a lower fitness than the maximum fitness we measured. This means that when
a repair was found, it might not have originated from the fittest candidate at that time.
The probability of this happening is low, but it remains a possibility. A better approach
would have been to track the fitness of each individual candidate, rather than only the
maximum fitness of the population. That said, if the repairs did not stem from the
previously fittest candidate, the observed jumps in fitness would be even more extreme,
further reinforcing our conclusions.
A more granular measurement of runtime - differentiating precomputing, fault localization,
mutation, and validation - would have yielded deeper insights than reporting only total
execution time.
Finally, while the conclusions drawn from the statistical tests are our own subjective
interpretation, we have consistently provided p-values to allow others to form their own
interpretations of the results.

Threats of Validity Summary

The biggest limitations are the small subject size, the small test suite,
and the bugs in FIXKIT. All of these issues can be addressed through further
research and improvements to the codebase.
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7 Related Work

This section provides an overview of the related work in the field of automatic program
repair, as well as the metrics considered in this context.
The related work is structured according to the different areas of Automatic Program
Repair that have emerged over time. The field of automatic program repair can be broadly
categorized into two major subfields, as shown in 14: behavioural and state-based repair.
Within behavioural repair, the evolution of methodologies highlights distinct phases. It
began with search-based approaches, which laid the groundwork for the field. Over time,
these were followed by pattern-based and semantic-based approaches. More recently,
behavioural automatic program repair expanded to include learning-based approaches
driven by new advancements in the field of machine learning.
Subsequently, the metrics used in the literature to evaluate the effectiveness and efficiency
of automatic program repair approaches are introduced. In particular, these include
repair rate, the correctness of generated patches, repair time, the number of test case
executions, and readability.

Automatic Program Repair APR

BEHAVIOURAL STATE

SEMANTIC-
BASED

LEARNING-
BASED

PATTERN-
BASED

SEARCH-
BASED

Classification of FixKit

Figure 14: Overview of Automatic Program Repair

7.1 Behavioural Automatic Program Repair

Behavioural automatic program repair involves the modification of the underlying code
of a program to eliminate faults.
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Search-Based Automatic Program Repair generates candidates and validates them
against a test suite. Search-based approaches are often referred to as Generate-and-
Validate [63], or heuristic-based approaches [6, 64].
The pioneer and most prominent example, GENPROG [27], employs genetic programming
to guide the candidate creation process. For patch generation, GENPROG utilizes mutation
operators such as inserting a statement, replacing one statement with another, or deleting
a statement.
Similarly, CARDUMEN [40] also leverages genetic programming but dynamically generates
templates to expand the search space. The core philosophy of CARDUMEN is to generate
a large volume of patches, based on the assumption that each patch provides valuable
insights into potential repairs.
However, the effectiveness of genetic programming in the context of automatic program
repair remains debated [47], leading to variations in search strategies. For instance,
RSRepair [47] employs random search instead of genetic programming.
In contrast, other approaches utilize an exhaustive search strategy to systematically
explore the entire search space of their mutation operators [8, 48]. This method ensures
that every possible mutation is considered, leaving no potential patch unexplored.
AE [57] aims to reduce the cost of repair by clustering similar candidates to minimize
additional test case executions. Instead of testing every candidate individually, AE exe-
cutes test cases only once per cluster. Additionally, it uses test case ordering, prioritizing
those most likely to fail and executing them first.
CapGen [61] utilizes the same mutation operators as GENPROG. In the process of mu-
tating a chosen code statement, CapGen considers the similarity between the context
of the fault location and other statements to identify the most suitable statements for
generating a patch.

Pattern-Based Automatic Program Repair also referred to as template-based ap-
proaches [64], categorize errors into distinct fault categories and provide templates
to repair each type of error. Initially, these templates were manually created by re-
searchers [22,35,54]. In order to solve a given bug type, the manual creation of templates
by a programmer is required. This proved to be an initial large cost.
For example, to prevent null pointer dereferencing, a check for null pointers would be
inserted before using an object. Manual template generation has been applied in several
approaches, such as PAR [22], Relifix [54], and SPR [35]. However, this approach is not
scalable, because of the aforementioned large workload.
This led to the next step: automating the generation of templates. Genesis [33] introduced
an approach that automatically infers code transformations for patch generation from
sample programs. A limitation of Genesis was the restriction of the search space to three
fault categories: null pointer, out-of-bounds, and class casting defects.
This limitation was later addressed by SOFix [32] through the mining of fixing patterns.
These patterns were found in posts on the website stack overflow to broaden the scope of
repair. These patterns are represented as GumTree edit scripts. Edit Scripts capture
the differences required to transform Code Snippet A into Code Snippet B. GumTree is
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an algorithm that displays the code differences directly at a node of the abstract syntax
tree [12].
REVISAR [49] automatically searches git repositories and their version histories for quick
fixes. Quick fixes are code patterns used by static analysis tools to address common
errors. REVISAR extracts these patterns and clusters them based on their similarity.
FixMiner [24] combines and extends the concepts of previous approaches, by introducing
rich edit scripts to represent fix patterns. These edit scripts include not only the code
changes themselves, but also the code context of the mined patterns. These Rich Edit
Scripts are paired with a specialized clustering method. In multiple iterations, the edit
scripts are first clustered based on identical abstract syntax trees, followed by similar edit
action trees, and finally incorporating the code context tree into the clustering process.

Learning-Based Automatic Program Repair In the early stages of Automatic Program
Repair, mutations were applied exclusively to the existing code in the faulty program.
However, this approach revealed that the search space was not optimal. To create a more
effective search space, research shifted towards the use of fix patterns. Nonetheless, the
challenge of addressing previously unseen bugs persists. Recent breakthroughs in deep
learning have opened up a new direction in Automatic Program Repair.
Learning-based Automatic Program Repair leverages Neural Machine Translation models
from the field of Natural Language Processing. These models are based on a classic
encoder-decoder architecture. The encoder processes buggy code statements and extracts
relevant information for the decoder, which then generates a patch from this information.
Notable examples include CoCoNut [36], Recoder [67], and DLFix [29]. Recoder stands
out for its unique approach: instead of generating an entirely new statement, it edits the
original statement until a correct version is achieved [67].
Although learning-based models perform remarkably well, they still face several challenges.
Learning-based approaches are trained on datasets consisting of bugs and commits that
fix those bugs. However, obtaining high-quality bug-fix pairs is difficult.
AlphaRepair [63] was the first to use the general-purpose code model CodeBERT to
generate patches. AlphaRepair masks the buggy lines, creating a fill-in-the-blank style
task for the model to solve. Various masking methods were tested, with the template
mask proving to be the most effective.
ChatRepair [64] utilizes the ChatGPT model [50], which is optimized for conversations.
The conversational aspect of ChatGPT is leveraged in ChatRepair to iteratively find a
patch. Additionally, the model is provided with more context through test cases and
failure information derived from the test cases. This approach closely resembles how a
programmer would use ChatGPT for debugging.

Semantic-Based Automatic Program Repair holds a distinct position within the field
of behavioural automatic program repair, due to the utilisation of symbolic execution.
A notable approach is SemFix [45], which employs symbolic execution starting from the
faulty location. Symbolic execution uses symbolic values instead of concrete values to
execute the program, with the goal of generating constraints for all possible program
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paths. One of these paths corresponds to the desired behaviour: passing the test case.
This constraint, referred to as the repair constraint, is then checked for feasibility using
a constraint solver. f the constraint is feasible, a patch is generated through program
synthesis, which involves creating a program that satisfies the specified constraint.
Since symbolic execution is computationally expensive due to the exponential growth
of possible paths that need to be explored, the approach does not scale well to larger
programs. To address this limitation, Mechtaev et al. introduced Angelix [42]. Angelix
integrates a highly optimized symbolic execution phase, enabling it to efficiently handle
large-scale programs.

7.2 State Automatic Program Repair

State automatic program repair attempts to correct errors during the runtime of a
program. Within the subfield of state automatic program repair, a wide range of methods
has been established.
One such method would be to introduce checkpoints for the possible recovery of the
latest correct state [7, 51,52].
Alternative methods include input modification, whereby a specific input that fails is
modified. A strong form of modification would be to ignore the input [3, 30,34].
In certain cases, the correct state of a program can be represented as an invariant. In the
event that the current state deviates from this invariant, an attempt is made to adapt it
to the correct invariant by changing the state as minimally as possible [9, 28,46].

7.3 Metrics Used in Automatic Program Repair Research

Repair Rate is a key metric in Automatic Program Repair, measuring the percentage
of faulty subjects successfully repaired. A high repair rate indicates that the employed
method is versatile and broadly applicable. This metric is frequently examined in the
literature [25,31,35,37,38,57,63,64].

Correctness is a significant challenge for Automatic Program Repair, as the patches
generated are often merely plausible rather than truly correct. A plausible patch is one
that passes all tests successfully without introducing new errors. One weakness of many
automatic program repair approaches is that they tend to overfit the test cases without
addressing the underlying problem. Consequently, even after a ’successful’ repair by
an APR approach, edge cases may remain that lead to error states. Therefore, manual
inspection is required to ensure the correctness of a found patch. This means that currently,
these patches may only be used to assist the debugging process. The correctness of patches
is an active area of research and the subject of intensive investigation [31,35,37,63,64].

Repair Time is a crucial metric for evaluating the efficiency of an Automatic Program
Repair approach, indicating the time taken by the algorithm to generate a patch. The
repair times of an approach are influenced by several factors, such as analysis, precomput-
ing and test cases execution. As program complexity increases, so does the effort required
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for these tasks, such as template generation in CARDUMEN 2.4.4. For more complex
programs with correspondingly larger test suites, the execution of test cases becomes the
limiting factor [13]. The repair time is frequently considered in research [13,25,35,37],
with specific focus also given to the number of test case executions [47,57].

Readability Fry et al. [14] investigated the readability of patches. Good readability
contributes to better software maintainability. For each fault, there are many possible fixes.
One fix could involve changing several lines, introducing new variables, and complicating
the control flow, while another fix might simply add an if-statement. Although both fixes
could lead to a correct solution, the shorter and more precise fix is of higher quality in
terms of readability.

Usefulness Developers are often reluctant to directly adopt machine-generated code into
their projects. Therefore, Tao et al. [55] examined the usefulness of machine-generated
patches as a debugging aid. The usefulness strongly depends on both the correctness
and readability of the patch. While high-quality patches significantly improve debugging
accuracy, low-quality patches actively hinder the debugging process [55].

Miscellaneous Furthermore, the locations where a patch is applied were investigated [39].
It was also examined whether more than one patch can be found for a single bug [39,40].
Additionally, the costs associated with an automatically generated patch were studied [57].

Related Work Summary

In this section, we introduced the different areas that have developed within APR.
We began with Search-Based APR, which includes the approaches implemented
in FIXKIT, followed by Pattern-Based approaches aimed at optimizing the
search space. More recently, breakthroughs in machine learning have enabled
Learning-Based approaches, such as ChatRepair. Independent of these, there
is also Semantic-Based APR, which leverages symbolic execution, constraint
solving, and program synthesis. Additionally, we examined the key metrics used
to evaluate APR effectiveness.
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8 Conclusion

In this study, we have implemented and evaluated established Automatic Program Repair
approaches in Python using the student assignment benchmark. Our results show that
FIXKIT achieves an overall repair rate of 21.69%, demonstrating that APR techniques can
be successfully applied to Python. Of the approaches evaluated, PYGENPROG consistently
identified the highest number of patches.
However, our results show that each method has unique strengths, as certain issues were
repaired exclusively by certain approaches. This highlights the importance of using a
diverse collection of APR strategies rather than relying on a single method.
Interestingly, the expected advantages of genetic programming in APR were not as
significant as originally hypothesised. Over 50% of runs showed no change in maximum
fitness over 10 generations, and over 80% showed either no improvement or only a single
step increase in fitness.
These findings highlight both the potential and limitations of current APR techniques.
While our results indicate that APR can automate debugging to some extent, further
improvements - particularly an optimization of the search space - are needed for wider
applicability in real-world scenarios.

8.1 Future Work

• Investigate whether improvements to the test suite yield different results.

• Investigate the generalizability of our results by running FIXKIT on real-world
software projects.

• Improve FIXKIT’s implementation, as the evaluation has revealed several critical
unresolved bugs.

• Enhance the test suites to improve patch quality, ensuring the generation of correct
rather than merely plausible patches.

• Extend FIXKIT with pattern-based and learning-based approaches. Research indi-
cates that incorporating additional context leads to better results. Initially, pattern-
based techniques should be explored, followed by learning-based approaches, which
currently appear to be the most promising.
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Appendix

Seed PyGenProg PyCardumen PyKali PyMutRepair

0 120 105 94 88
1343 120 89 81 92
2419 120 63 88 89
3798 117 99 90 86
5637 122 95 91 87
6056 115 89 90 85
6841 108 99 94 87
6924 120 81 98 89
7770 128 92 84 87
8013 101 95 84 87

Table 11: Overview of the patches found by each approach across all seeds

Candidates PyKali PyMutRepair

average q1 28.2 35.0
median q1 25.0 31.0

average q2 89.8 112.0
median q2 97.0 121.0

average q3 33.8 42.0
median q3 37.0 46.0

average q4 62.6 78.0
median q4 57.0 71.0

average all 53.6 66.75
median all 49.0 61.0

Table 12: Overview of created candidates by PYKALI and PYMUTREPAIR.
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Statistical Hypothesis Tests of the Repairs

Kolmogorov-Smirnov Test The Kolmogorov-Smirnov test is a nonparametric
statistical test that compares the cumulative distribution functions of two datasets
to determine if they come from the same distribution.

Null hypothesis H0 The distribution of the sample is identical to the normal
distribution.

Alternative hypothesis H1 The distribution of the sample differs from the
normal distribution.

Approach D-Statistics P-Value Result

PyGenProg 0.25 0.49 No Rejection of H0

PyCardumen 0.24 0.52 No Rejection of H0

PyKali 0.14 0.96 No Rejection of H0

PyMutRepair 0.24 0.53 No Rejection of H0

Table 13: Results of the Kolmogorov-Smirnov test

Shapiro-Wilk Test The Shapiro-Wilk test is a statistical test that assesses whether
a given dataset follows a normal distribution.

Null hypothesis H0 The population of the sample is normally distributed.

Alternative hypothesis H1 The population of the sample is not normally
distributed.

Approach W-Statistics P-Value Result

PyGenProg 0.88 0.15 No Rejection of H0

PyCardumen 0.87 0.11 No Rejection of H0

PyKali 0.96 0.15 No Rejection of H0

PyMutRepair 0.90 0.24 No Rejection of H0

Table 14: Results of the Shapiro-Wilk Test

Interpretation The tests do not reject the null hypothesis. They indicate that the
data are normally distributed. As a further check, we look at the data graphically.

Continuation on the next page.
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Interpretation We conclude that the data most likely do not follow a normal
distribution, with the exception of the data from PYKALI. Therefore, we need to
continue with a non-parametric test.

Kruskal-Wallis Test The Kruskal-Wallis test is a non-parametric test that analyses
whether there is a significant difference between the medians of the samples.

Nullhypothese H0 There is no difference between the medians of the groups.

Alternativhypothese H1 There is at least one difference between the medians
of the groups.

Approach H-Statistics P-Value Result

All Approaches 24.02 2.46× 10−5 Rejection of H0

Table 15: Results of the Kruskal-Wallis Test

Interpretation The null hypothesis can be rejected. The mean values of at least
one group differ significantly from the others. Next, a posthoc-dunn test can be
performed to pairwise compare the approaches.

Posthoc Dunn Test The Dunn test is a post-hoc test used after a Kruskal-Wallis
test to perform pairwise comparisons between the groups and determine which
groups differ significantly from each other.

Continuation on the next page.
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Null hypothesis H0 There is no difference between the medians of the two
groups compared

Alternative hypothesis H1 There is a significant difference between the me-
dians of the two groups compared

Group Comparison P-Value Result Mean Difference

PyGenProg
vs PyCardumen

0.0139 Rejection of H0 26.4

PyGenProg
vs PyKali

0.0008 Rejection of H0 27.7

PyGenProg
vs PyMutRepair

0.00003 Rejection of H0 29.4

PyCardumen
vs PyKali

1.0000 No Rejection of H0 1.3

PyCardumen
vs PyMutRepair

0.7805 No Rejection of H0 3.0

PyKali
vs PyMutRepair

1.0000 No Rejection of H0 1.7

Table 16: Results of pairwise comparisons of the post-hoc Dunn test

Interpretation All approaches differ significantly from PYGENPROG. The
difference in the mean shows that PYGENPROG finds significantly more repairs
than the other approaches.

All the test results have been presented, allowing the reader to form their own
interpretation of the values.
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Statistical Hypothesis Tests of the Runtime

Kolmogorov-Smirnov Test The Kolmogorov-Smirnov test is a nonparametric
statistical test that compares the cumulative distribution functions of two datasets
to determine if they come from the same distribution.

Null hypothesis H0 The distribution of the sample is identical to the normal
distribution.

Alternative hypothesis H1 The distribution of the sample differs from the
normal distribution.

Approach D-Statistics P-Value Result

PyGenProg 0.19 0 Rejection of H0

PyCardumen 0.13 8.6× 10−266 Rejection of H0

PyKali 0.18 0 Rejection of H0

PyMutRepair 0.23 0 Rejection of H0

Table 17: Results of the Kolmogorov-Smirnov test

Shapiro-Wilk Test The Shapiro-Wilk test is a statistical test that assesses whether
a given dataset follows a normal distribution.

Null hypothesis H0 The population of the sample is normally distributed.

Alternative hypothesis H1 The population of the sample is not normally
distributed.

Approach W-Statistics P-Value Result

PyGenProg 0.70 9.1× 10−99 Rejection of H0

PyCardumen 0.89 5.9× 10−75 Rejection of H0

PyKali 0.68 5.3e× 10−101 Rejection of H0

PyMutRepair 0.55 2.4e× 10−109 Rejection of H0

Table 18: Results of the Shapiro-Wilk Test

Interpretation The data are not normally distributed and a non-parametric test
is required to check for differences.

Continuation on the next page.
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Kruskal-Wallis Test The Kruskal-Wallis test is a non-parametric test that analyses
whether there is a significant difference between the medians of the samples.

Nullhypothese H0 There is no difference between the medians of the groups.

Alternativhypothese H1 There is at least one difference between the medians
of the groups.

Approach H-Statistics P-Value Result

All Approaches 37,257.37 0 Rejection of H0

Table 19: Results of the Kruskal-Wallis Test

Interpretation The null hypothesis can be rejected. The mean values of at least
one group differ significantly from the others. Next, a posthoc-dunn test can be
performed to pairwise compare the approaches.

Posthoc Dunn Test The Dunn test is a post-hoc test used after a Kruskal-Wallis
test to perform pairwise comparisons between the groups and determine which
groups differ significantly from each other.

Null hypothesis H0 There is no difference between the medians of the two
groups compared

Alternative hypothesis H1 There is a significant difference between the me-
dians of the two groups compared

Group Comparison P-Value Result

PyCardumen vs PyGenProg 0 Rejection of H0

PyCardumen vs PyKali 0 Rejection of H0

PyCardumen vs PyMutRepair 0 Rejection of H0

PyGenProg vs PyKali 0 Rejection of H0

PyGenProg vs PyMutRepair 1.5× 10−270 Rejection of H0

PyKali vs PyMutRepair 1.1× 10−104 Rejection of H0

Table 20: Results of pairwise comparisons of the post-hoc Dunn test

Interpretation All groups differ significantly in their runtime.

All the test results have been presented, allowing the reader to form their own
interpretation of the values.

xii



Statistical Hypothesis Tests of the Time to Fix

Kolmogorov-Smirnov Test The Kolmogorov-Smirnov test is a nonparametric
statistical test that compares the cumulative distribution functions of two datasets
to determine if they come from the same distribution.

Null hypothesis H0 The distribution of the sample is identical to the normal
distribution.

Alternative hypothesis H1 The distribution of the sample differs from the
normal distribution.

Approach D-Statistics P-Value Result

PyGenProg 0.28 9.6× 10−88 Rejection of H0

PyCardumen 0.23 2.7× 10−41 Rejection of H0

PyKali 0.31 3.7× 10−78 Rejection of H0

PyMutRepair 0.21 9.5× 10−36 Rejection of H0

Table 21: Results of the Kolmogorov-Smirnov test

Shapiro-Wilk Test The Shapiro-Wilk test is a statistical test that assesses whether
a given dataset follows a normal distribution.

Null hypothesis H0 The population of the sample is normally distributed.

Alternative hypothesis H1 The population of the sample is not normally
distributed.

Approach W-Statistics P-Value Result

PyGenProg 0.50 3.7× 10−49 Rejection of H0

PyCardumen 0.63 4.2× 10−40 Rejection of H0

PyKali 0.38 1.1× 10−47 Rejection of H0

PyMutRepair 0.65 4.1× 10−39 Rejection of H0

Table 22: Results of the Shapiro-Wilk Test

Interpretation The data are not normally distributed and a non-parametric test
is required to check for differences.

Continuation on the next page.
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Kruskal-Wallis Test The Kruskal-Wallis test is a non-parametric test that analyses
whether there is a significant difference between the medians of the samples.

Nullhypothese H0 There is no difference between the medians of the groups.

Alternativhypothese H1 There is at least one difference between the medians
of the groups.

Approach H-Statistics P-Value Result

All Approaches 1,501.69 0 Rejection of H0

Table 23: Results of the Kruskal-Wallis Test

Interpretation The null hypothesis can be rejected. The mean values of at least
one group differ significantly from the others. Next, a posthoc-dunn test can be
performed to pairwise compare the approaches.

Posthoc Dunn Test The Dunn test is a post-hoc test used after a Kruskal-Wallis
test to perform pairwise comparisons between the groups and determine which
groups differ significantly from each other.

Null hypothesis H0 There is no difference between the medians of the two
groups compared

Alternative hypothesis H1 There is a significant difference between the me-
dians of the two groups compared

Group Comparison P-Value Result

PyCardumen vs PyGenProg 4.91× 10−179 Rejection of H0

PyCardumen vs PyKali 7.34× 10−208 Rejection of H0

PyCardumen vs PyMutRepair 8.99× 10−6 Rejection of H0

PyGenProg vs PyKali 1.36× 10−4 Rejection of H0

PyGenProg vs PyMutRepair 3.28× 10−119 Rejection of H0

PyKali vs PyMutRepair 1.76× 10−146 Rejection of H0

Table 24: Results of pairwise comparisons of the post-hoc Dunn test

Interpretation All groups differ significantly in their time to fix.

All the test results have been presented, allowing the reader to form their own
interpretation of the values.
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Patch Question Subject Number Seed

Patch 1 1 1 0
Patch 2 1 2 0
Patch 3 1 3 0
Patch 4 1 4 0
Patch 5 1 5 0
Patch 6 1 6 0
Patch 7 1 7 0
Patch 8 1 8 0
Patch 9 1 9 0
Patch 10 1 10 0

Table 25: Translation of patch to run

No Patch Question Subject Number Seed

No Patch 1 1 22 0
No Patch 2 1 26 0
No Patch 3 1 27 0
No Patch 4 1 31 0
No Patch 5 1 54 0
No Patch 6 1 59 0
No Patch 7 1 61 0
No Patch 8 1 68 0
No Patch 9 1 69 0
No Patch 10 1 72 0

Table 26: Translation of no patch to run
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Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für Texte,
Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt, dass
bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw.
Täuschung eingeleitet wird.

Berlin, den February 10, 2025
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